ayushsinha commited on
Commit
b906cf4
Β·
verified Β·
1 Parent(s): 1afbfd2

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +117 -0
README.md ADDED
@@ -0,0 +1,117 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # News Article Generation with GPT2
2
+
3
+ This repository hosts a quantized version of the GPT2 model, fine-tuned for generation of news article tasks. The model has been optimized for efficient deployment while maintaining high accuracy, making it suitable for resource-constrained environments.
4
+
5
+ ## Model Details
6
+
7
+ - **Model Architecture:** gpt2
8
+ - **Task:** Text Summarization
9
+ - **Dataset:** Hugging Face's `ag_news'
10
+ - **Quantization:** Float16
11
+ - **Fine-tuning Framework:** Hugging Face Transformers
12
+
13
+ ## Usage
14
+
15
+ ### Installation
16
+
17
+ ```sh
18
+ pip install transformers torch
19
+ ```
20
+
21
+ ### Loading the Model
22
+
23
+ ```python
24
+ from transformers import AutoTokenizer, AutoModelForCausalLM
25
+ import torch
26
+
27
+ device = "cuda" if torch.cuda.is_available() else "cpu"
28
+
29
+ model_name = "AventIQ-AI/gpt2-news-article-generation"
30
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
31
+ model = AutoModelForCausalLM.from_pretrained(model_name).to(device)
32
+
33
+ import torch
34
+ import html
35
+
36
+ # Define test text
37
+ test_text = "The future of AI"
38
+
39
+ # Tokenize input
40
+ inputs = tokenizer(test_text, return_tensors="pt").to("cuda")
41
+
42
+ # Generate response
43
+ with torch.no_grad():
44
+ output_tokens = model.generate(
45
+ **inputs,
46
+ max_length=200, # Allow longer responses
47
+ num_beams=5, # Balances quality & diversity
48
+ repetition_penalty=2.0, # Reduce repeating patterns
49
+ temperature=0.2, # More deterministic response
50
+ top_k=100, # Allows more diverse words
51
+ top_p=0.9, # Keeps probability confidence
52
+ do_sample=True, # Sampling for variety
53
+ no_repeat_ngram_size=3, # Prevents excessive repetition
54
+ num_return_sequences=1, # Returns one best sequence
55
+ early_stopping=True, # Stops when response is complete
56
+ length_penalty=1.2, # Balances response length
57
+ pad_token_id=tokenizer.eos_token_id, # Prevents truncation
58
+ eos_token_id=tokenizer.eos_token_id, # Ensures completion
59
+ return_dict_in_generate=True, # Structured output
60
+ output_scores=True # Debugging purposes
61
+ )
62
+
63
+ # Decode and clean response
64
+ generated_response = tokenizer.decode(output_tokens.sequences[0], skip_special_tokens=True)
65
+ cleaned_response = html.unescape(generated_response).replace("#39;", "'").replace("quot;", '"')
66
+
67
+ print("\nGenerated Response:\n", cleaned_response)
68
+ ```
69
+
70
+ # πŸ“Š ROUGE Evaluation Results
71
+
72
+ After fine-tuning the **T5-Small** model for text summarization, we obtained the following **ROUGE** scores:
73
+
74
+ | **Metric** | **Score** | **Meaning** |
75
+ |-------------|-----------|-------------|
76
+ | **ROUGE-1** | **0.3061** (~30%) | Measures overlap of **unigrams (single words)** between the reference and generated summary. |
77
+ | **ROUGE-2** | **0.1241** (~12%) | Measures overlap of **bigrams (two-word phrases)**, indicating coherence and fluency. |
78
+ | **ROUGE-L** | **0.2233** (~22%) | Measures **longest matching word sequences**, testing sentence structure preservation. |
79
+ | **ROUGE-Lsum** | **0.2620** (~26%) | Similar to ROUGE-L but optimized for summarization tasks. |
80
+
81
+
82
+ ## Fine-Tuning Details
83
+
84
+ ### Dataset
85
+
86
+ The Hugging Face's `ag_news` dataset was used, containing the text and their labels.
87
+
88
+ ### Training
89
+
90
+ - Number of epochs: 3
91
+ - Batch size: 4
92
+ - Evaluation strategy: epoch
93
+ - Learning rate: 5e-5
94
+
95
+ ### Quantization
96
+
97
+ Post-training quantization was applied using PyTorch's built-in quantization framework to reduce the model size and improve inference efficiency.
98
+
99
+ ## Repository Structure
100
+
101
+ ```
102
+ .
103
+ β”œβ”€β”€ model/ # Contains the quantized model files
104
+ β”œβ”€β”€ tokenizer_config/ # Tokenizer configuration and vocabulary files
105
+ β”œβ”€β”€ model.safetensors/ # Quantized Model
106
+ β”œβ”€β”€ README.md # Model documentation
107
+ ```
108
+
109
+ ## Limitations
110
+
111
+ - The model may not generalize well to domains outside the fine-tuning dataset.
112
+ - Quantization may result in minor accuracy degradation compared to full-precision models.
113
+
114
+ ## Contributing
115
+
116
+ Contributions are welcome! Feel free to open an issue or submit a pull request if you have suggestions or improvements.
117
+