camie-tagger-onnxruntime / infer-refined.py
AngelBottomless's picture
Upload 9 files
a7ab59e verified
raw
history blame contribute delete
7.51 kB
import onnxruntime as ort
import numpy as np
import json
from PIL import Image
def preprocess_image(img_path, target_size=512, keep_aspect=True):
"""
Load an image from img_path, convert to RGB,
and resize/pad to (target_size, target_size).
Scales pixel values to [0,1] and returns a (1,3,target_size,target_size) float32 array.
"""
img = Image.open(img_path).convert("RGB")
if keep_aspect:
# Preserve aspect ratio, pad black
w, h = img.size
aspect = w / h
if aspect > 1:
new_w = target_size
new_h = int(new_w / aspect)
else:
new_h = target_size
new_w = int(new_h * aspect)
# Resize with Lanczos
img = img.resize((new_w, new_h), Image.Resampling.LANCZOS)
# Pad to a square
background = Image.new("RGB", (target_size, target_size), (0, 0, 0))
paste_x = (target_size - new_w) // 2
paste_y = (target_size - new_h) // 2
background.paste(img, (paste_x, paste_y))
img = background
else:
# simple direct resize to 512x512
img = img.resize((target_size, target_size), Image.Resampling.LANCZOS)
# Convert to numpy array
arr = np.array(img).astype("float32") / 255.0 # scale to [0,1]
# Transpose from HWC -> CHW
arr = np.transpose(arr, (2, 0, 1))
# Add batch dimension: (1,3,512,512)
arr = np.expand_dims(arr, axis=0)
return arr
# Example input
def load_thresholds(threshold_json_path, mode="balanced"):
"""
Loads thresholds from the given JSON file, using a particular mode
(e.g. 'balanced', 'high_precision', 'high_recall') for each category.
Returns:
thresholds_by_category (dict): e.g. { "general": 0.328..., "character": 0.304..., ... }
fallback_threshold (float): The overall threshold if category not found
"""
with open(threshold_json_path, "r", encoding="utf-8") as f:
data = json.load(f)
# The fallback threshold from the "overall" section for the chosen mode
fallback_threshold = data["overall"][mode]["threshold"]
# Build a dict of thresholds keyed by category
thresholds_by_category = {}
if "categories" in data:
for cat_name, cat_modes in data["categories"].items():
# If the chosen mode is present for that category, use it;
# otherwise fall back to the "overall" threshold.
if mode in cat_modes and "threshold" in cat_modes[mode]:
thresholds_by_category[cat_name] = cat_modes[mode]["threshold"]
else:
thresholds_by_category[cat_name] = fallback_threshold
return thresholds_by_category, fallback_threshold
def onnx_inference(
img_paths,
onnx_path="camie_refined_no_flash.onnx",
metadata_file="metadata.json",
threshold_json_path="thresholds.json",
mode="balanced",
target_size=512,
keep_aspect=True
):
"""
Loads the ONNX model, runs inference on a list of image paths,
and applies category-wise thresholds from threshold.json (per the chosen mode).
Args:
img_paths : List of paths to images.
onnx_path : Path to the exported ONNX model file.
metadata_file : Path to metadata.json that contains idx_to_tag, tag_to_category, etc.
threshold_json_path : Path to thresholds.json containing category-wise threshold info.
mode : "balanced", "high_precision", or "high_recall".
target_size : Final size of preprocessed images (512 by default).
keep_aspect : If True, preserve aspect ratio when resizing, pad with black.
Returns:
A list of dicts, one per input image, each containing:
{
"initial_logits": np.ndarray of shape (N_tags,),
"refined_logits": np.ndarray of shape (N_tags,),
"predicted_indices": list of tag indices that exceeded threshold,
"predicted_tags": list of predicted tag strings,
...
}
"""
# 1) Initialize ONNX runtime session
session = ort.InferenceSession(onnx_path, providers=["CPUExecutionProvider"])
# For GPU usage, you could do e.g.:
# session = ort.InferenceSession(onnx_path, providers=["CUDAExecutionProvider"])
# 2) Pre-load metadata
with open(metadata_file, "r", encoding="utf-8") as f:
metadata = json.load(f)
idx_to_tag = metadata["idx_to_tag"] # e.g. { "0": "brown_hair", "1": "blue_eyes", ... }
tag_to_category = metadata.get("tag_to_category", {})
# Load thresholds from thresholds.json using the specified mode
thresholds_by_category, fallback_threshold = load_thresholds(threshold_json_path, mode)
# 3) Preprocess each image into a batch
batch_tensors = []
for img_path in img_paths:
x = preprocess_image(img_path, target_size=target_size, keep_aspect=keep_aspect)
batch_tensors.append(x)
# Concatenate along the batch dimension => shape (batch_size, 3, H, W)
batch_input = np.concatenate(batch_tensors, axis=0)
# 4) Run inference
input_name = session.get_inputs()[0].name # typically "image" or "input"
outputs = session.run(None, {input_name: batch_input})
# Typically we get [initial_tags, refined_tags] as output
initial_preds, refined_preds = outputs # shapes => (batch_size, N_tags)
# 5) Convert logits -> probabilities -> apply category-specific thresholds
batch_results = []
for i in range(initial_preds.shape[0]):
init_logit = initial_preds[i, :] # shape (N_tags,)
ref_logit = refined_preds[i, :] # shape (N_tags,)
ref_prob = 1.0 / (1.0 + np.exp(-ref_logit)) # shape (N_tags,)
predicted_indices = []
predicted_tags = []
# Check each tag against the category threshold
for idx in range(ref_logit.shape[0]):
tag_name = idx_to_tag[str(idx)] # Convert index->string->tag name
category = tag_to_category.get(tag_name, "general") # fallback to "general" if missing
cat_threshold = thresholds_by_category.get(category, fallback_threshold)
if ref_prob[idx] >= cat_threshold:
predicted_indices.append(idx)
predicted_tags.append(tag_name)
# Build result for this image
result_dict = {
"initial_logits": init_logit,
"refined_logits": ref_logit,
"predicted_indices": predicted_indices,
"predicted_tags": predicted_tags,
}
batch_results.append(result_dict)
return batch_results
if __name__ == "__main__":
# Example usage
images = ["images.png"]
results = onnx_inference(
img_paths=images,
onnx_path="camie_refined_no_flash_v15.onnx",
metadata_file="metadata.json",
threshold_json_path="thresholds.json",
mode="balanced", # or "balanced", "high_precision"
target_size=512,
keep_aspect=True
)
for i, res in enumerate(results):
print(f"Image: {images[i]}")
print(f" # of predicted tags above threshold: {len(res['predicted_indices'])}")
# Show first 10 predicted tags (if available)
sample_tags = res['predicted_tags']
print(" Sample predicted tags:", sample_tags)
print()