Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,71 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# galaxy_gen
|
2 |
+
|
3 |
+
`galaxy_gen` is a library to generate galaxy data/distributions. The models used are present in this page.
|
4 |
+
|
5 |
+
## Installation
|
6 |
+
|
7 |
+
You can install the package using pip:
|
8 |
+
|
9 |
+
```sh
|
10 |
+
pip install galaxy_gen
|
11 |
+
```
|
12 |
+
|
13 |
+
## Usage
|
14 |
+
Here is an example of how to use the galaxy_gen library:
|
15 |
+
|
16 |
+
```python
|
17 |
+
# example_usage.py
|
18 |
+
import torch
|
19 |
+
import matplotlib.pyplot as plt
|
20 |
+
import galaxy_gen
|
21 |
+
from galaxy_gen.sampler import load_model, generate_samples
|
22 |
+
import os
|
23 |
+
|
24 |
+
# Path to your saved model checkpoint.
|
25 |
+
model_path = os.path.join(os.path.dirname(galaxy_gen.__file__), 'models/sample_model')
|
26 |
+
device = 'cpu' # or 'cuda' if you have a GPU
|
27 |
+
|
28 |
+
# Load the model.
|
29 |
+
model = load_sample_model(model_path, device=device)
|
30 |
+
|
31 |
+
# Generate random samples.
|
32 |
+
samples = generate_samples(model)
|
33 |
+
|
34 |
+
# (Optional) Visualize the samples.
|
35 |
+
samples = samples.cpu().numpy()
|
36 |
+
fig, axes = plt.subplots(4, 4, figsize=(8, 8))
|
37 |
+
for i, ax in enumerate(axes.flatten()):
|
38 |
+
ax.imshow(samples[i][0], cmap='gray')
|
39 |
+
ax.axis('off')
|
40 |
+
plt.show()
|
41 |
+
```
|
42 |
+
|
43 |
+
Another expample to use the pre-trained model
|
44 |
+
```python
|
45 |
+
# example_usage.py
|
46 |
+
import torch
|
47 |
+
import matplotlib.pyplot as plt
|
48 |
+
from galaxy_gen.sampler import load_model, generate_metallicity_samples, generate_formationtime_samples
|
49 |
+
|
50 |
+
# Path to your saved model checkpoint.
|
51 |
+
model_path = 'models/formationtime_model.pth'
|
52 |
+
device = 'cpu' # or 'cuda' if you have a GPU
|
53 |
+
|
54 |
+
# Load the model.
|
55 |
+
model = load_model("formation_time",model_path, device=device)
|
56 |
+
|
57 |
+
# Generate random samples.
|
58 |
+
samples = generate_formationtime_samples(model)
|
59 |
+
|
60 |
+
# (Optional) Visualize the samples.
|
61 |
+
samples = samples.cpu().numpy()
|
62 |
+
fig, axes = plt.subplots(4, 4, figsize=(8, 8))
|
63 |
+
for i, ax in enumerate(axes.flatten()):
|
64 |
+
ax.imshow(samples[i][0])
|
65 |
+
ax.axis('off')
|
66 |
+
plt.show()
|
67 |
+
|
68 |
+
```
|
69 |
+
|
70 |
+
## License
|
71 |
+
This project is licensed under the MIT License - see the LICENSE file for details.
|