# LoRA Low-Rank Adaptation ([LoRA](https://huggingface.co/papers/2309.15223)) is a PEFT method that decomposes a large matrix into two smaller low-rank matrices in the attention layers. This drastically reduces the number of parameters that need to be fine-tuned. The abstract from the paper is: *We propose a neural language modeling system based on low-rank adaptation (LoRA) for speech recognition output rescoring. Although pretrained language models (LMs) like BERT have shown superior performance in second-pass rescoring, the high computational cost of scaling up the pretraining stage and adapting the pretrained models to specific domains limit their practical use in rescoring. Here we present a method based on low-rank decomposition to train a rescoring BERT model and adapt it to new domains using only a fraction (0.08%) of the pretrained parameters. These inserted matrices are optimized through a discriminative training objective along with a correlation-based regularization loss. The proposed low-rank adaptation Rescore-BERT (LoRB) architecture is evaluated on LibriSpeech and internal datasets with decreased training times by factors between 5.4 and 3.6.*. ## LoraConfig [[autodoc]] tuners.lora.config.LoraConfig ## LoraModel [[autodoc]] tuners.lora.model.LoraModel ## Utility [[autodoc]] utils.loftq_utils.replace_lora_weights_loftq