|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import re |
|
|
|
import pytest |
|
import torch |
|
from safetensors import safe_open |
|
from torch import nn |
|
|
|
from peft import PeftModel, VeraConfig, get_peft_model |
|
|
|
|
|
class MLP(nn.Module): |
|
def __init__(self, bias=True): |
|
super().__init__() |
|
self.relu = nn.ReLU() |
|
self.lin0 = nn.Linear(10, 20, bias=bias) |
|
self.lin1 = nn.Linear(20, 20, bias=bias) |
|
self.lin2 = nn.Linear(20, 20, bias=bias) |
|
self.lin3 = nn.Linear(20, 2, bias=bias) |
|
self.sm = nn.LogSoftmax(dim=-1) |
|
|
|
def forward(self, X): |
|
X = X.float() |
|
X = self.lin0(X) |
|
X = self.relu(X) |
|
X = self.lin1(X) |
|
X = self.relu(X) |
|
X = self.lin2(X) |
|
X = self.relu(X) |
|
X = self.lin3(X) |
|
X = self.sm(X) |
|
return X |
|
|
|
|
|
class TestVera: |
|
@pytest.fixture |
|
def mlp(self): |
|
torch.manual_seed(0) |
|
model = MLP() |
|
return model |
|
|
|
@pytest.fixture |
|
def mlp_same_prng(self, mlp): |
|
torch.manual_seed(0) |
|
|
|
config = VeraConfig(target_modules=["lin1", "lin2"], init_weights=False) |
|
|
|
peft_model = get_peft_model(mlp, config) |
|
config2 = VeraConfig(target_modules=["lin1", "lin2"], init_weights=False) |
|
peft_model.add_adapter("other", config2) |
|
return peft_model |
|
|
|
def test_multiple_adapters_same_prng_weights(self, mlp_same_prng): |
|
|
|
assert ( |
|
mlp_same_prng.base_model.model.lin1.vera_A["default"] |
|
is mlp_same_prng.base_model.model.lin1.vera_A["other"] |
|
) |
|
assert ( |
|
mlp_same_prng.base_model.model.lin1.vera_B["default"] |
|
is mlp_same_prng.base_model.model.lin1.vera_B["other"] |
|
) |
|
assert ( |
|
mlp_same_prng.base_model.model.lin2.vera_A["default"] |
|
is mlp_same_prng.base_model.model.lin2.vera_A["other"] |
|
) |
|
assert ( |
|
mlp_same_prng.base_model.model.lin2.vera_B["default"] |
|
is mlp_same_prng.base_model.model.lin2.vera_B["other"] |
|
) |
|
|
|
input = torch.randn(5, 10) |
|
mlp_same_prng.set_adapter("default") |
|
output_default = mlp_same_prng(input) |
|
mlp_same_prng.set_adapter("other") |
|
output_other = mlp_same_prng(input) |
|
assert not torch.allclose(output_default, output_other, atol=1e-3, rtol=1e-3) |
|
|
|
def test_multiple_adapters_different_prng_raises(self): |
|
|
|
model = MLP() |
|
config = VeraConfig(target_modules=["lin1", "lin2"], init_weights=False) |
|
|
|
peft_model = get_peft_model(model, config) |
|
config2 = VeraConfig(target_modules=["lin1", "lin2"], init_weights=False, projection_prng_key=123) |
|
|
|
msg = ( |
|
r"Vera PRNG initialisation key must be the same for all adapters. Got config.projection_prng_key=123 but " |
|
r"previous config had 0" |
|
) |
|
with pytest.raises(ValueError, match=msg): |
|
peft_model.add_adapter("other", config2) |
|
|
|
def test_multiple_adapters_save_load_save_projection_true(self, mlp_same_prng, tmp_path): |
|
|
|
torch.manual_seed(0) |
|
input = torch.randn(5, 10) |
|
mlp_same_prng.set_adapter("default") |
|
output_default = mlp_same_prng(input) |
|
mlp_same_prng.set_adapter("other") |
|
output_other = mlp_same_prng(input) |
|
|
|
|
|
assert not torch.allclose(output_default, output_other, atol=1e-3, rtol=1e-3) |
|
|
|
save_path = tmp_path / "vera" |
|
mlp_same_prng.save_pretrained(save_path) |
|
assert os.path.exists(save_path / "adapter_config.json") |
|
assert os.path.exists(save_path / "other" / "adapter_config.json") |
|
|
|
torch.manual_seed(0) |
|
mlp = MLP() |
|
peft_model = PeftModel.from_pretrained(mlp, save_path) |
|
peft_model.load_adapter(save_path / "other", "other") |
|
|
|
peft_model.set_adapter("default") |
|
output_default_loaded = peft_model(input) |
|
peft_model.set_adapter("other") |
|
output_other_loaded = peft_model(input) |
|
|
|
assert torch.allclose(output_default, output_default_loaded, atol=1e-3, rtol=1e-3) |
|
assert torch.allclose(output_other, output_other_loaded, atol=1e-3, rtol=1e-3) |
|
|
|
def test_multiple_adapters_save_load_save_projection_false(self, mlp, tmp_path): |
|
|
|
torch.manual_seed(1) |
|
config = VeraConfig(target_modules=["lin1", "lin2"], init_weights=False, save_projection=False) |
|
|
|
peft_model = get_peft_model(mlp, config, adapter_name="first") |
|
config2 = VeraConfig(target_modules=["lin1", "lin2"], init_weights=False, save_projection=False) |
|
peft_model.add_adapter("second", config2) |
|
|
|
input = torch.randn(5, 10) |
|
peft_model.set_adapter("first") |
|
output_first = peft_model(input) |
|
peft_model.set_adapter("second") |
|
output_second = peft_model(input) |
|
|
|
|
|
assert not torch.allclose(output_first, output_second, atol=1e-3, rtol=1e-3) |
|
|
|
save_path = tmp_path / "vera" |
|
peft_model.save_pretrained(save_path) |
|
assert os.path.exists(save_path / "first" / "adapter_config.json") |
|
assert os.path.exists(save_path / "second" / "adapter_config.json") |
|
|
|
torch.manual_seed(0) |
|
mlp = MLP() |
|
peft_model = PeftModel.from_pretrained(mlp, save_path / "first", adapter_name="first") |
|
peft_model.load_adapter(save_path / "second", "second") |
|
|
|
peft_model.set_adapter("first") |
|
output_first_loaded = peft_model(input) |
|
peft_model.set_adapter("second") |
|
output_second_loaded = peft_model(input) |
|
|
|
assert torch.allclose(output_first, output_first_loaded, atol=1e-3, rtol=1e-3) |
|
assert torch.allclose(output_second, output_second_loaded, atol=1e-3, rtol=1e-3) |
|
|
|
def test_multiple_adapters_save_projection_true_contains_vera_A_vera_B(self, mlp_same_prng, tmp_path): |
|
|
|
save_path = tmp_path / "vera" |
|
mlp_same_prng.save_pretrained(save_path) |
|
|
|
sd_default = {} |
|
with safe_open(save_path / "adapter_model.safetensors", framework="pt", device="cpu") as f: |
|
for key in f.keys(): |
|
sd_default[key] = f.get_tensor(key) |
|
|
|
assert any("vera_A" in key for key in sd_default) |
|
assert any("vera_B" in key for key in sd_default) |
|
|
|
assert sd_default["base_model.vera_A"].shape == (256, 20) |
|
assert sd_default["base_model.vera_B"].shape == (20, 256) |
|
|
|
sd_other = {} |
|
with safe_open(save_path / "other" / "adapter_model.safetensors", framework="pt", device="cpu") as f: |
|
for key in f.keys(): |
|
sd_other[key] = f.get_tensor(key) |
|
|
|
assert any("vera_A" in key for key in sd_other) |
|
assert any("vera_B" in key for key in sd_other) |
|
assert sd_other["base_model.vera_A"].shape == (256, 20) |
|
assert sd_other["base_model.vera_B"].shape == (20, 256) |
|
|
|
def test_multiple_adapters_save_projection_false_contains_no_vera_A_vera_B(self, mlp, tmp_path): |
|
torch.manual_seed(1) |
|
config = VeraConfig(target_modules=["lin1", "lin2"], init_weights=False, save_projection=False) |
|
|
|
peft_model = get_peft_model(mlp, config, adapter_name="first") |
|
config2 = VeraConfig(target_modules=["lin1", "lin2"], init_weights=False, save_projection=False) |
|
peft_model.add_adapter("second", config2) |
|
|
|
save_path = tmp_path / "vera" |
|
peft_model.save_pretrained(save_path) |
|
|
|
sd_default = {} |
|
with safe_open(save_path / "first" / "adapter_model.safetensors", framework="pt", device="cpu") as f: |
|
for key in f.keys(): |
|
sd_default[key] = f.get_tensor(key) |
|
|
|
assert not any("vera_A" in key for key in sd_default) |
|
assert not any("vera_B" in key for key in sd_default) |
|
|
|
sd_other = {} |
|
with safe_open(save_path / "second" / "adapter_model.safetensors", framework="pt", device="cpu") as f: |
|
for key in f.keys(): |
|
sd_other[key] = f.get_tensor(key) |
|
|
|
assert not any("vera_A" in key for key in sd_other) |
|
assert not any("vera_B" in key for key in sd_other) |
|
|
|
def test_vera_A_vera_B_share_memory(self, mlp_same_prng): |
|
vera_A = mlp_same_prng.vera_A["default"] |
|
vera_B = mlp_same_prng.vera_B["default"] |
|
|
|
|
|
assert vera_A.data_ptr() == mlp_same_prng.base_model.model.lin1.vera_A["default"].data_ptr() |
|
assert vera_B.data_ptr() == mlp_same_prng.base_model.model.lin1.vera_B["default"].data_ptr() |
|
assert vera_A.data_ptr() == mlp_same_prng.base_model.model.lin2.vera_A["default"].data_ptr() |
|
assert vera_B.data_ptr() == mlp_same_prng.base_model.model.lin2.vera_B["default"].data_ptr() |
|
|
|
assert vera_A.data_ptr() != vera_B.data_ptr() |
|
|
|
def test_vera_lambda_dont_share_memory(self, mlp_same_prng): |
|
|
|
assert ( |
|
mlp_same_prng.base_model.model.lin1.vera_lambda_b["default"].data_ptr() |
|
!= mlp_same_prng.base_model.model.lin1.vera_lambda_b["other"].data_ptr() |
|
) |
|
assert ( |
|
mlp_same_prng.base_model.model.lin1.vera_lambda_b["default"].data_ptr() |
|
!= mlp_same_prng.base_model.model.lin2.vera_lambda_b["default"].data_ptr() |
|
) |
|
assert ( |
|
mlp_same_prng.base_model.model.lin1.vera_lambda_b["other"].data_ptr() |
|
!= mlp_same_prng.base_model.model.lin2.vera_lambda_b["other"].data_ptr() |
|
) |
|
assert ( |
|
mlp_same_prng.base_model.model.lin1.vera_lambda_d["default"].data_ptr() |
|
!= mlp_same_prng.base_model.model.lin1.vera_lambda_d["other"].data_ptr() |
|
) |
|
assert ( |
|
mlp_same_prng.base_model.model.lin1.vera_lambda_d["default"].data_ptr() |
|
!= mlp_same_prng.base_model.model.lin2.vera_lambda_d["default"].data_ptr() |
|
) |
|
assert ( |
|
mlp_same_prng.base_model.model.lin1.vera_lambda_d["other"].data_ptr() |
|
!= mlp_same_prng.base_model.model.lin2.vera_lambda_d["other"].data_ptr() |
|
) |
|
|
|
def test_vera_different_shapes_raises(self, mlp): |
|
|
|
|
|
config = VeraConfig(target_modules=["lin0", "lin1"], init_weights=False) |
|
msg = re.escape( |
|
"Multiple target layers with different dimensions were specified. VeRA only supports a single dimension " |
|
"size. Expected shape (20, 10), got (20, 20)." |
|
) |
|
with pytest.raises(ValueError, match=msg): |
|
get_peft_model(mlp, config) |
|
|