kaggle / working /peft /tests /test_low_level_api.py
1112lee's picture
nice-model
9d6cb8e verified
#!/usr/bin/env python3
# coding=utf-8
# Copyright 2023-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import torch
from peft import LoraConfig, get_peft_model_state_dict, inject_adapter_in_model
from peft.utils import ModulesToSaveWrapper
class DummyModel(torch.nn.Module):
def __init__(self):
super().__init__()
self.embedding = torch.nn.Embedding(10, 10)
self.linear = torch.nn.Linear(10, 10)
self.lm_head = torch.nn.Linear(10, 10)
def forward(self, input_ids):
x = self.embedding(input_ids)
x = self.linear(x)
x = self.lm_head(x)
return x
class TestPeft(unittest.TestCase):
def setUp(self):
self.model = DummyModel()
lora_config = LoraConfig(
lora_alpha=16,
lora_dropout=0.1,
r=64,
bias="none",
target_modules=["linear"],
)
self.model = inject_adapter_in_model(lora_config, self.model)
def test_inject_adapter_in_model(self):
dummy_inputs = torch.LongTensor([[0, 1, 2, 3, 4, 5, 6, 7]])
_ = self.model(dummy_inputs)
for name, module in self.model.named_modules():
if name == "linear":
assert hasattr(module, "lora_A")
assert hasattr(module, "lora_B")
def test_get_peft_model_state_dict(self):
peft_state_dict = get_peft_model_state_dict(self.model)
for key in peft_state_dict.keys():
assert "lora" in key
def test_modules_to_save(self):
self.model = DummyModel()
lora_config = LoraConfig(
lora_alpha=16,
lora_dropout=0.1,
r=64,
bias="none",
target_modules=["linear"],
modules_to_save=["embedding"],
)
self.model = inject_adapter_in_model(lora_config, self.model)
for name, module in self.model.named_modules():
if name == "linear":
assert hasattr(module, "lora_A")
assert hasattr(module, "lora_B")
elif name == "embedding":
assert isinstance(module, ModulesToSaveWrapper)
state_dict = get_peft_model_state_dict(self.model)
assert "embedding.weight" in state_dict.keys()
assert hasattr(self.model.embedding, "weight")