|
import argparse |
|
import gc |
|
import hashlib |
|
import itertools |
|
import logging |
|
import math |
|
import os |
|
import threading |
|
import warnings |
|
from pathlib import Path |
|
from typing import Union |
|
|
|
import datasets |
|
import diffusers |
|
import numpy as np |
|
import psutil |
|
import torch |
|
import torch.nn.functional as F |
|
import torch.utils.checkpoint |
|
import transformers |
|
from accelerate import Accelerator |
|
from accelerate.logging import get_logger |
|
from accelerate.utils import set_seed |
|
from diffusers import ( |
|
AutoencoderKL, |
|
DDPMScheduler, |
|
DiffusionPipeline, |
|
DPMSolverMultistepScheduler, |
|
UNet2DConditionModel, |
|
) |
|
from diffusers.optimization import get_scheduler |
|
from diffusers.utils import check_min_version |
|
from diffusers.utils.import_utils import is_xformers_available |
|
from huggingface_hub import HfApi |
|
from PIL import Image |
|
from torch.utils.data import Dataset |
|
from torchvision import transforms |
|
from tqdm.auto import tqdm |
|
from transformers import AutoTokenizer, PretrainedConfig |
|
|
|
from peft import LoHaConfig, LoKrConfig, LoraConfig, get_peft_model |
|
|
|
|
|
|
|
check_min_version("0.10.0.dev0") |
|
|
|
logger = get_logger(__name__) |
|
|
|
UNET_TARGET_MODULES = [ |
|
"to_q", |
|
"to_k", |
|
"to_v", |
|
"proj", |
|
"proj_in", |
|
"proj_out", |
|
"conv", |
|
"conv1", |
|
"conv2", |
|
"conv_shortcut", |
|
"to_out.0", |
|
"time_emb_proj", |
|
"ff.net.2", |
|
] |
|
|
|
TEXT_ENCODER_TARGET_MODULES = ["fc1", "fc2", "q_proj", "k_proj", "v_proj", "out_proj"] |
|
|
|
|
|
def import_model_class_from_model_name_or_path(pretrained_model_name_or_path: str, revision: str): |
|
text_encoder_config = PretrainedConfig.from_pretrained( |
|
pretrained_model_name_or_path, |
|
subfolder="text_encoder", |
|
revision=revision, |
|
) |
|
model_class = text_encoder_config.architectures[0] |
|
|
|
if model_class == "CLIPTextModel": |
|
from transformers import CLIPTextModel |
|
|
|
return CLIPTextModel |
|
elif model_class == "RobertaSeriesModelWithTransformation": |
|
from diffusers.pipelines.alt_diffusion.modeling_roberta_series import RobertaSeriesModelWithTransformation |
|
|
|
return RobertaSeriesModelWithTransformation |
|
else: |
|
raise ValueError(f"{model_class} is not supported.") |
|
|
|
|
|
def create_unet_adapter_config(args: argparse.Namespace) -> Union[LoraConfig, LoHaConfig, LoKrConfig]: |
|
if args.adapter == "full": |
|
raise ValueError("Cannot create unet adapter config for full parameter") |
|
|
|
if args.adapter == "lora": |
|
config = LoraConfig( |
|
r=args.unet_r, |
|
lora_alpha=args.unet_alpha, |
|
target_modules=UNET_TARGET_MODULES, |
|
lora_dropout=args.unet_dropout, |
|
bias=args.unet_bias, |
|
init_lora_weights=True, |
|
) |
|
elif args.adapter == "loha": |
|
config = LoHaConfig( |
|
r=args.unet_r, |
|
alpha=args.unet_alpha, |
|
target_modules=UNET_TARGET_MODULES, |
|
rank_dropout=args.unet_rank_dropout, |
|
module_dropout=args.unet_module_dropout, |
|
use_effective_conv2d=args.unet_use_effective_conv2d, |
|
init_weights=True, |
|
) |
|
elif args.adapter == "lokr": |
|
config = LoKrConfig( |
|
r=args.unet_r, |
|
alpha=args.unet_alpha, |
|
target_modules=UNET_TARGET_MODULES, |
|
rank_dropout=args.unet_rank_dropout, |
|
module_dropout=args.unet_module_dropout, |
|
use_effective_conv2d=args.unet_use_effective_conv2d, |
|
decompose_both=args.unet_decompose_both, |
|
decompose_factor=args.unet_decompose_factor, |
|
init_weights=True, |
|
) |
|
else: |
|
raise ValueError(f"Unknown adapter type {args.adapter}") |
|
|
|
return config |
|
|
|
|
|
def create_text_encoder_adapter_config(args: argparse.Namespace) -> Union[LoraConfig, LoHaConfig, LoKrConfig]: |
|
if args.adapter == "full": |
|
raise ValueError("Cannot create text_encoder adapter config for full parameter") |
|
|
|
if args.adapter == "lora": |
|
config = LoraConfig( |
|
r=args.te_r, |
|
lora_alpha=args.te_alpha, |
|
target_modules=TEXT_ENCODER_TARGET_MODULES, |
|
lora_dropout=args.te_dropout, |
|
bias=args.te_bias, |
|
init_lora_weights=True, |
|
) |
|
elif args.adapter == "loha": |
|
config = LoHaConfig( |
|
r=args.te_r, |
|
alpha=args.te_alpha, |
|
target_modules=TEXT_ENCODER_TARGET_MODULES, |
|
rank_dropout=args.te_rank_dropout, |
|
module_dropout=args.te_module_dropout, |
|
init_weights=True, |
|
) |
|
elif args.adapter == "lokr": |
|
config = LoKrConfig( |
|
r=args.te_r, |
|
alpha=args.te_alpha, |
|
target_modules=TEXT_ENCODER_TARGET_MODULES, |
|
rank_dropout=args.te_rank_dropout, |
|
module_dropout=args.te_module_dropout, |
|
decompose_both=args.te_decompose_both, |
|
decompose_factor=args.te_decompose_factor, |
|
init_weights=True, |
|
) |
|
else: |
|
raise ValueError(f"Unknown adapter type {args.adapter}") |
|
|
|
return config |
|
|
|
|
|
def parse_args(input_args=None): |
|
parser = argparse.ArgumentParser(description="Simple example of a training script.") |
|
parser.add_argument( |
|
"--pretrained_model_name_or_path", |
|
type=str, |
|
default=None, |
|
required=True, |
|
help="Path to pretrained model or model identifier from huggingface.co/models.", |
|
) |
|
parser.add_argument( |
|
"--revision", |
|
type=str, |
|
default=None, |
|
required=False, |
|
help="Revision of pretrained model identifier from huggingface.co/models.", |
|
) |
|
parser.add_argument( |
|
"--tokenizer_name", |
|
type=str, |
|
default=None, |
|
help="Pretrained tokenizer name or path if not the same as model_name", |
|
) |
|
parser.add_argument( |
|
"--instance_data_dir", |
|
type=str, |
|
default=None, |
|
required=True, |
|
help="A folder containing the training data of instance images.", |
|
) |
|
parser.add_argument( |
|
"--class_data_dir", |
|
type=str, |
|
default=None, |
|
required=False, |
|
help="A folder containing the training data of class images.", |
|
) |
|
parser.add_argument( |
|
"--instance_prompt", |
|
type=str, |
|
default=None, |
|
required=True, |
|
help="The prompt with identifier specifying the instance", |
|
) |
|
parser.add_argument( |
|
"--class_prompt", |
|
type=str, |
|
default=None, |
|
help="The prompt to specify images in the same class as provided instance images.", |
|
) |
|
parser.add_argument( |
|
"--with_prior_preservation", |
|
default=False, |
|
action="store_true", |
|
help="Flag to add prior preservation loss.", |
|
) |
|
parser.add_argument("--prior_loss_weight", type=float, default=1.0, help="The weight of prior preservation loss.") |
|
parser.add_argument( |
|
"--num_class_images", |
|
type=int, |
|
default=100, |
|
help=( |
|
"Minimal class images for prior preservation loss. If there are not enough images already present in" |
|
" class_data_dir, additional images will be sampled with class_prompt." |
|
), |
|
) |
|
parser.add_argument( |
|
"--validation_prompt", |
|
type=str, |
|
default=None, |
|
help="A prompt that is used during validation to verify that the model is learning.", |
|
) |
|
parser.add_argument( |
|
"--num_validation_images", |
|
type=int, |
|
default=4, |
|
help="Number of images that should be generated during validation with `validation_prompt`.", |
|
) |
|
parser.add_argument( |
|
"--validation_steps", |
|
type=int, |
|
default=100, |
|
help=( |
|
"Run dreambooth validation every X steps. Dreambooth validation consists of running the prompt" |
|
" `args.validation_prompt` multiple times: `args.num_validation_images`." |
|
), |
|
) |
|
parser.add_argument( |
|
"--output_dir", |
|
type=str, |
|
default="text-inversion-model", |
|
help="The output directory where the model predictions and checkpoints will be written.", |
|
) |
|
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") |
|
parser.add_argument( |
|
"--resolution", |
|
type=int, |
|
default=512, |
|
help=( |
|
"The resolution for input images, all the images in the train/validation dataset will be resized to this" |
|
" resolution" |
|
), |
|
) |
|
parser.add_argument( |
|
"--center_crop", action="store_true", help="Whether to center crop images before resizing to resolution" |
|
) |
|
parser.add_argument("--train_text_encoder", action="store_true", help="Whether to train the text encoder") |
|
|
|
parser.add_argument( |
|
"--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader." |
|
) |
|
parser.add_argument( |
|
"--sample_batch_size", type=int, default=4, help="Batch size (per device) for sampling images." |
|
) |
|
parser.add_argument("--num_train_epochs", type=int, default=1) |
|
parser.add_argument( |
|
"--max_train_steps", |
|
type=int, |
|
default=None, |
|
help="Total number of training steps to perform. If provided, overrides num_train_epochs.", |
|
) |
|
parser.add_argument( |
|
"--checkpointing_steps", |
|
type=int, |
|
default=500, |
|
help=( |
|
"Save a checkpoint of the training state every X updates. These checkpoints can be used both as final" |
|
" checkpoints in case they are better than the last checkpoint, and are also suitable for resuming" |
|
" training using `--resume_from_checkpoint`." |
|
), |
|
) |
|
parser.add_argument( |
|
"--resume_from_checkpoint", |
|
type=str, |
|
default=None, |
|
help=( |
|
"Whether training should be resumed from a previous checkpoint. Use a path saved by" |
|
' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.' |
|
), |
|
) |
|
parser.add_argument( |
|
"--gradient_accumulation_steps", |
|
type=int, |
|
default=1, |
|
help="Number of updates steps to accumulate before performing a backward/update pass.", |
|
) |
|
parser.add_argument( |
|
"--gradient_checkpointing", |
|
action="store_true", |
|
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", |
|
) |
|
parser.add_argument( |
|
"--learning_rate", |
|
type=float, |
|
default=5e-6, |
|
help="Initial learning rate (after the potential warmup period) to use.", |
|
) |
|
parser.add_argument( |
|
"--scale_lr", |
|
action="store_true", |
|
default=False, |
|
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", |
|
) |
|
parser.add_argument( |
|
"--lr_scheduler", |
|
type=str, |
|
default="constant", |
|
help=( |
|
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' |
|
' "constant", "constant_with_warmup"]' |
|
), |
|
) |
|
parser.add_argument( |
|
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." |
|
) |
|
parser.add_argument( |
|
"--lr_num_cycles", |
|
type=int, |
|
default=1, |
|
help="Number of hard resets of the lr in cosine_with_restarts scheduler.", |
|
) |
|
parser.add_argument("--lr_power", type=float, default=1.0, help="Power factor of the polynomial scheduler.") |
|
parser.add_argument( |
|
"--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes." |
|
) |
|
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.") |
|
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") |
|
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.") |
|
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer") |
|
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") |
|
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") |
|
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") |
|
parser.add_argument( |
|
"--hub_model_id", |
|
type=str, |
|
default=None, |
|
help="The name of the repository to keep in sync with the local `output_dir`.", |
|
) |
|
parser.add_argument( |
|
"--logging_dir", |
|
type=str, |
|
default="logs", |
|
help=( |
|
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" |
|
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." |
|
), |
|
) |
|
parser.add_argument( |
|
"--allow_tf32", |
|
action="store_true", |
|
help=( |
|
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see" |
|
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices" |
|
), |
|
) |
|
parser.add_argument( |
|
"--report_to", |
|
type=str, |
|
default="tensorboard", |
|
help=( |
|
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`' |
|
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.' |
|
), |
|
) |
|
parser.add_argument( |
|
"--wandb_key", |
|
type=str, |
|
default=None, |
|
help=("If report to option is set to wandb, api-key for wandb used for login to wandb "), |
|
) |
|
parser.add_argument( |
|
"--wandb_project_name", |
|
type=str, |
|
default=None, |
|
help=("If report to option is set to wandb, project name in wandb for log tracking "), |
|
) |
|
parser.add_argument( |
|
"--mixed_precision", |
|
type=str, |
|
default=None, |
|
choices=["no", "fp16", "bf16"], |
|
help=( |
|
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" |
|
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the" |
|
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config." |
|
), |
|
) |
|
parser.add_argument( |
|
"--prior_generation_precision", |
|
type=str, |
|
default=None, |
|
choices=["no", "fp32", "fp16", "bf16"], |
|
help=( |
|
"Choose prior generation precision between fp32, fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" |
|
" 1.10.and an Nvidia Ampere GPU. Default to fp16 if a GPU is available else fp32." |
|
), |
|
) |
|
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") |
|
parser.add_argument( |
|
"--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers." |
|
) |
|
|
|
|
|
subparsers = parser.add_subparsers(dest="adapter") |
|
|
|
|
|
subparsers.add_parser("full", help="Train full model without adapters") |
|
|
|
|
|
lora = subparsers.add_parser("lora", help="Use LoRA adapter") |
|
lora.add_argument("--unet_r", type=int, default=8, help="LoRA rank for unet") |
|
lora.add_argument("--unet_alpha", type=int, default=8, help="LoRA alpha for unet") |
|
lora.add_argument("--unet_dropout", type=float, default=0.0, help="LoRA dropout probability for unet") |
|
lora.add_argument( |
|
"--unet_bias", |
|
type=str, |
|
default="none", |
|
help="Bias type for LoRA. Can be 'none', 'all' or 'lora_only'", |
|
) |
|
lora.add_argument( |
|
"--te_r", type=int, default=8, help="LoRA rank for text_encoder, only used if `train_text_encoder` is True" |
|
) |
|
lora.add_argument( |
|
"--te_alpha", |
|
type=int, |
|
default=8, |
|
help="LoRA alpha for text_encoder, only used if `train_text_encoder` is True", |
|
) |
|
lora.add_argument( |
|
"--te_dropout", |
|
type=float, |
|
default=0.0, |
|
help="LoRA dropout probability for text_encoder, only used if `train_text_encoder` is True", |
|
) |
|
lora.add_argument( |
|
"--te_bias", |
|
type=str, |
|
default="none", |
|
help="Bias type for LoRA. Can be 'none', 'all' or 'lora_only', only used if `train_text_encoder` is True", |
|
) |
|
|
|
|
|
loha = subparsers.add_parser("loha", help="Use LoHa adapter") |
|
loha.add_argument("--unet_r", type=int, default=8, help="LoHa rank for unet") |
|
loha.add_argument("--unet_alpha", type=int, default=8, help="LoHa alpha for unet") |
|
loha.add_argument("--unet_rank_dropout", type=float, default=0.0, help="LoHa rank_dropout probability for unet") |
|
loha.add_argument( |
|
"--unet_module_dropout", type=float, default=0.0, help="LoHa module_dropout probability for unet" |
|
) |
|
loha.add_argument( |
|
"--unet_use_effective_conv2d", |
|
action="store_true", |
|
help="Use parameter effective decomposition in unet for Conv2d 3x3 with ksize > 1", |
|
) |
|
loha.add_argument( |
|
"--te_r", type=int, default=8, help="LoHa rank for text_encoder, only used if `train_text_encoder` is True" |
|
) |
|
loha.add_argument( |
|
"--te_alpha", |
|
type=int, |
|
default=8, |
|
help="LoHa alpha for text_encoder, only used if `train_text_encoder` is True", |
|
) |
|
loha.add_argument( |
|
"--te_rank_dropout", |
|
type=float, |
|
default=0.0, |
|
help="LoHa rank_dropout probability for text_encoder, only used if `train_text_encoder` is True", |
|
) |
|
loha.add_argument( |
|
"--te_module_dropout", |
|
type=float, |
|
default=0.0, |
|
help="LoHa module_dropout probability for text_encoder, only used if `train_text_encoder` is True", |
|
) |
|
|
|
|
|
lokr = subparsers.add_parser("lokr", help="Use LoKr adapter") |
|
lokr.add_argument("--unet_r", type=int, default=8, help="LoKr rank for unet") |
|
lokr.add_argument("--unet_alpha", type=int, default=8, help="LoKr alpha for unet") |
|
lokr.add_argument("--unet_rank_dropout", type=float, default=0.0, help="LoKr rank_dropout probability for unet") |
|
lokr.add_argument( |
|
"--unet_module_dropout", type=float, default=0.0, help="LoKr module_dropout probability for unet" |
|
) |
|
lokr.add_argument( |
|
"--unet_use_effective_conv2d", |
|
action="store_true", |
|
help="Use parameter effective decomposition in unet for Conv2d 3x3 with ksize > 1", |
|
) |
|
lokr.add_argument( |
|
"--unet_decompose_both", action="store_true", help="Decompose left matrix in kronecker product for unet" |
|
) |
|
lokr.add_argument( |
|
"--unet_decompose_factor", type=int, default=-1, help="Decompose factor in kronecker product for unet" |
|
) |
|
lokr.add_argument( |
|
"--te_r", type=int, default=8, help="LoKr rank for text_encoder, only used if `train_text_encoder` is True" |
|
) |
|
lokr.add_argument( |
|
"--te_alpha", |
|
type=int, |
|
default=8, |
|
help="LoKr alpha for text_encoder, only used if `train_text_encoder` is True", |
|
) |
|
lokr.add_argument( |
|
"--te_rank_dropout", |
|
type=float, |
|
default=0.0, |
|
help="LoKr rank_dropout probability for text_encoder, only used if `train_text_encoder` is True", |
|
) |
|
lokr.add_argument( |
|
"--te_module_dropout", |
|
type=float, |
|
default=0.0, |
|
help="LoKr module_dropout probability for text_encoder, only used if `train_text_encoder` is True", |
|
) |
|
lokr.add_argument( |
|
"--te_decompose_both", |
|
action="store_true", |
|
help="Decompose left matrix in kronecker product for text_encoder, only used if `train_text_encoder` is True", |
|
) |
|
lokr.add_argument( |
|
"--te_decompose_factor", |
|
type=int, |
|
default=-1, |
|
help="Decompose factor in kronecker product for text_encoder, only used if `train_text_encoder` is True", |
|
) |
|
|
|
if input_args is not None: |
|
args = parser.parse_args(input_args) |
|
else: |
|
args = parser.parse_args() |
|
|
|
env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) |
|
if env_local_rank != -1 and env_local_rank != args.local_rank: |
|
args.local_rank = env_local_rank |
|
|
|
if args.with_prior_preservation: |
|
if args.class_data_dir is None: |
|
raise ValueError("You must specify a data directory for class images.") |
|
if args.class_prompt is None: |
|
raise ValueError("You must specify prompt for class images.") |
|
else: |
|
|
|
if args.class_data_dir is not None: |
|
warnings.warn("You need not use --class_data_dir without --with_prior_preservation.") |
|
if args.class_prompt is not None: |
|
warnings.warn("You need not use --class_prompt without --with_prior_preservation.") |
|
|
|
return args |
|
|
|
|
|
|
|
def b2mb(x): |
|
return int(x / 2**20) |
|
|
|
|
|
|
|
class TorchTracemalloc: |
|
def __enter__(self): |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
torch.cuda.reset_max_memory_allocated() |
|
self.begin = torch.cuda.memory_allocated() |
|
self.process = psutil.Process() |
|
|
|
self.cpu_begin = self.cpu_mem_used() |
|
self.peak_monitoring = True |
|
peak_monitor_thread = threading.Thread(target=self.peak_monitor_func) |
|
peak_monitor_thread.daemon = True |
|
peak_monitor_thread.start() |
|
return self |
|
|
|
def cpu_mem_used(self): |
|
"""get resident set size memory for the current process""" |
|
return self.process.memory_info().rss |
|
|
|
def peak_monitor_func(self): |
|
self.cpu_peak = -1 |
|
|
|
while True: |
|
self.cpu_peak = max(self.cpu_mem_used(), self.cpu_peak) |
|
|
|
|
|
|
|
|
|
if not self.peak_monitoring: |
|
break |
|
|
|
def __exit__(self, *exc): |
|
self.peak_monitoring = False |
|
|
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
self.end = torch.cuda.memory_allocated() |
|
self.peak = torch.cuda.max_memory_allocated() |
|
self.used = b2mb(self.end - self.begin) |
|
self.peaked = b2mb(self.peak - self.begin) |
|
|
|
self.cpu_end = self.cpu_mem_used() |
|
self.cpu_used = b2mb(self.cpu_end - self.cpu_begin) |
|
self.cpu_peaked = b2mb(self.cpu_peak - self.cpu_begin) |
|
|
|
|
|
|
|
class DreamBoothDataset(Dataset): |
|
""" |
|
A dataset to prepare the instance and class images with the prompts for fine-tuning the model. |
|
It pre-processes the images and the tokenizes prompts. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
instance_data_root, |
|
instance_prompt, |
|
tokenizer, |
|
class_data_root=None, |
|
class_prompt=None, |
|
size=512, |
|
center_crop=False, |
|
): |
|
self.size = size |
|
self.center_crop = center_crop |
|
self.tokenizer = tokenizer |
|
|
|
self.instance_data_root = Path(instance_data_root) |
|
if not self.instance_data_root.exists(): |
|
raise ValueError("Instance images root doesn't exists.") |
|
|
|
self.instance_images_path = list(Path(instance_data_root).iterdir()) |
|
self.num_instance_images = len(self.instance_images_path) |
|
self.instance_prompt = instance_prompt |
|
self._length = self.num_instance_images |
|
|
|
if class_data_root is not None: |
|
self.class_data_root = Path(class_data_root) |
|
self.class_data_root.mkdir(parents=True, exist_ok=True) |
|
self.class_images_path = list(self.class_data_root.iterdir()) |
|
self.num_class_images = len(self.class_images_path) |
|
self._length = max(self.num_class_images, self.num_instance_images) |
|
self.class_prompt = class_prompt |
|
else: |
|
self.class_data_root = None |
|
|
|
self.image_transforms = transforms.Compose( |
|
[ |
|
transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR), |
|
transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size), |
|
transforms.ToTensor(), |
|
transforms.Normalize([0.5], [0.5]), |
|
] |
|
) |
|
|
|
def __len__(self): |
|
return self._length |
|
|
|
def __getitem__(self, index): |
|
example = {} |
|
instance_image = Image.open(self.instance_images_path[index % self.num_instance_images]) |
|
if not instance_image.mode == "RGB": |
|
instance_image = instance_image.convert("RGB") |
|
example["instance_images"] = self.image_transforms(instance_image) |
|
example["instance_prompt_ids"] = self.tokenizer( |
|
self.instance_prompt, |
|
truncation=True, |
|
padding="max_length", |
|
max_length=self.tokenizer.model_max_length, |
|
return_tensors="pt", |
|
).input_ids |
|
|
|
if self.class_data_root: |
|
class_image = Image.open(self.class_images_path[index % self.num_class_images]) |
|
if not class_image.mode == "RGB": |
|
class_image = class_image.convert("RGB") |
|
example["class_images"] = self.image_transforms(class_image) |
|
example["class_prompt_ids"] = self.tokenizer( |
|
self.class_prompt, |
|
truncation=True, |
|
padding="max_length", |
|
max_length=self.tokenizer.model_max_length, |
|
return_tensors="pt", |
|
).input_ids |
|
|
|
return example |
|
|
|
|
|
def collate_fn(examples, with_prior_preservation=False): |
|
input_ids = [example["instance_prompt_ids"] for example in examples] |
|
pixel_values = [example["instance_images"] for example in examples] |
|
|
|
|
|
|
|
if with_prior_preservation: |
|
input_ids += [example["class_prompt_ids"] for example in examples] |
|
pixel_values += [example["class_images"] for example in examples] |
|
|
|
pixel_values = torch.stack(pixel_values) |
|
pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float() |
|
|
|
input_ids = torch.cat(input_ids, dim=0) |
|
|
|
batch = { |
|
"input_ids": input_ids, |
|
"pixel_values": pixel_values, |
|
} |
|
return batch |
|
|
|
|
|
class PromptDataset(Dataset): |
|
"A simple dataset to prepare the prompts to generate class images on multiple GPUs." |
|
|
|
def __init__(self, prompt, num_samples): |
|
self.prompt = prompt |
|
self.num_samples = num_samples |
|
|
|
def __len__(self): |
|
return self.num_samples |
|
|
|
def __getitem__(self, index): |
|
example = {} |
|
example["prompt"] = self.prompt |
|
example["index"] = index |
|
return example |
|
|
|
|
|
def main(args): |
|
logging_dir = Path(args.output_dir, args.logging_dir) |
|
|
|
accelerator = Accelerator( |
|
gradient_accumulation_steps=args.gradient_accumulation_steps, |
|
mixed_precision=args.mixed_precision, |
|
log_with=args.report_to, |
|
project_dir=logging_dir, |
|
) |
|
if args.report_to == "wandb": |
|
import wandb |
|
|
|
wandb.login(key=args.wandb_key) |
|
wandb.init(project=args.wandb_project_name) |
|
|
|
|
|
|
|
if args.train_text_encoder and args.gradient_accumulation_steps > 1 and accelerator.num_processes > 1: |
|
raise ValueError( |
|
"Gradient accumulation is not supported when training the text encoder in distributed training. " |
|
"Please set gradient_accumulation_steps to 1. This feature will be supported in the future." |
|
) |
|
|
|
|
|
logging.basicConfig( |
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", |
|
datefmt="%m/%d/%Y %H:%M:%S", |
|
level=logging.INFO, |
|
) |
|
logger.info(accelerator.state, main_process_only=False) |
|
if accelerator.is_local_main_process: |
|
datasets.utils.logging.set_verbosity_warning() |
|
transformers.utils.logging.set_verbosity_warning() |
|
diffusers.utils.logging.set_verbosity_info() |
|
else: |
|
datasets.utils.logging.set_verbosity_error() |
|
transformers.utils.logging.set_verbosity_error() |
|
diffusers.utils.logging.set_verbosity_error() |
|
|
|
|
|
if args.seed is not None: |
|
set_seed(args.seed) |
|
|
|
|
|
if args.with_prior_preservation: |
|
class_images_dir = Path(args.class_data_dir) |
|
if not class_images_dir.exists(): |
|
class_images_dir.mkdir(parents=True) |
|
cur_class_images = len(list(class_images_dir.iterdir())) |
|
|
|
if cur_class_images < args.num_class_images: |
|
torch_dtype = torch.float16 if accelerator.device.type == "cuda" else torch.float32 |
|
if args.prior_generation_precision == "fp32": |
|
torch_dtype = torch.float32 |
|
elif args.prior_generation_precision == "fp16": |
|
torch_dtype = torch.float16 |
|
elif args.prior_generation_precision == "bf16": |
|
torch_dtype = torch.bfloat16 |
|
pipeline = DiffusionPipeline.from_pretrained( |
|
args.pretrained_model_name_or_path, |
|
torch_dtype=torch_dtype, |
|
safety_checker=None, |
|
revision=args.revision, |
|
) |
|
pipeline.set_progress_bar_config(disable=True) |
|
|
|
num_new_images = args.num_class_images - cur_class_images |
|
logger.info(f"Number of class images to sample: {num_new_images}.") |
|
|
|
sample_dataset = PromptDataset(args.class_prompt, num_new_images) |
|
sample_dataloader = torch.utils.data.DataLoader(sample_dataset, batch_size=args.sample_batch_size) |
|
|
|
sample_dataloader = accelerator.prepare(sample_dataloader) |
|
pipeline.to(accelerator.device) |
|
|
|
for example in tqdm( |
|
sample_dataloader, desc="Generating class images", disable=not accelerator.is_local_main_process |
|
): |
|
images = pipeline(example["prompt"]).images |
|
|
|
for i, image in enumerate(images): |
|
hash_image = hashlib.sha1(image.tobytes()).hexdigest() |
|
image_filename = class_images_dir / f"{example['index'][i] + cur_class_images}-{hash_image}.jpg" |
|
image.save(image_filename) |
|
|
|
del pipeline |
|
if torch.cuda.is_available(): |
|
torch.cuda.empty_cache() |
|
|
|
|
|
if accelerator.is_main_process: |
|
if args.push_to_hub: |
|
api = HfApi(token=args.hub_token) |
|
|
|
|
|
repo_name = args.hub_model_id |
|
if repo_name is None: |
|
repo_name = Path(args.output_dir).absolute().name |
|
repo_id = api.create_repo(repo_name, exist_ok=True).repo_id |
|
|
|
with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore: |
|
if "step_*" not in gitignore: |
|
gitignore.write("step_*\n") |
|
if "epoch_*" not in gitignore: |
|
gitignore.write("epoch_*\n") |
|
elif args.output_dir is not None: |
|
os.makedirs(args.output_dir, exist_ok=True) |
|
|
|
|
|
if args.tokenizer_name: |
|
tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_name, revision=args.revision, use_fast=False) |
|
elif args.pretrained_model_name_or_path: |
|
tokenizer = AutoTokenizer.from_pretrained( |
|
args.pretrained_model_name_or_path, |
|
subfolder="tokenizer", |
|
revision=args.revision, |
|
use_fast=False, |
|
) |
|
|
|
|
|
text_encoder_cls = import_model_class_from_model_name_or_path(args.pretrained_model_name_or_path, args.revision) |
|
|
|
|
|
noise_scheduler = DDPMScheduler( |
|
beta_start=0.00085, |
|
beta_end=0.012, |
|
beta_schedule="scaled_linear", |
|
num_train_timesteps=1000, |
|
) |
|
text_encoder = text_encoder_cls.from_pretrained( |
|
args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision |
|
) |
|
vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision) |
|
unet = UNet2DConditionModel.from_pretrained( |
|
args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision |
|
) |
|
|
|
if args.adapter != "full": |
|
config = create_unet_adapter_config(args) |
|
unet = get_peft_model(unet, config) |
|
unet.print_trainable_parameters() |
|
print(unet) |
|
|
|
vae.requires_grad_(False) |
|
if not args.train_text_encoder: |
|
text_encoder.requires_grad_(False) |
|
elif args.train_text_encoder and args.adapter != "full": |
|
config = create_text_encoder_adapter_config(args) |
|
text_encoder = get_peft_model(text_encoder, config) |
|
text_encoder.print_trainable_parameters() |
|
print(text_encoder) |
|
|
|
if args.enable_xformers_memory_efficient_attention: |
|
if is_xformers_available(): |
|
unet.enable_xformers_memory_efficient_attention() |
|
else: |
|
raise ValueError("xformers is not available. Make sure it is installed correctly") |
|
|
|
if args.gradient_checkpointing: |
|
unet.enable_gradient_checkpointing() |
|
if args.train_text_encoder and not args.adapter != "full": |
|
text_encoder.gradient_checkpointing_enable() |
|
|
|
|
|
|
|
if args.allow_tf32: |
|
torch.backends.cuda.matmul.allow_tf32 = True |
|
|
|
if args.scale_lr: |
|
args.learning_rate = ( |
|
args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes |
|
) |
|
|
|
|
|
if args.use_8bit_adam: |
|
try: |
|
import bitsandbytes as bnb |
|
except ImportError: |
|
raise ImportError( |
|
"To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`." |
|
) |
|
|
|
optimizer_class = bnb.optim.AdamW8bit |
|
else: |
|
optimizer_class = torch.optim.AdamW |
|
|
|
|
|
params_to_optimize = ( |
|
itertools.chain(unet.parameters(), text_encoder.parameters()) if args.train_text_encoder else unet.parameters() |
|
) |
|
optimizer = optimizer_class( |
|
params_to_optimize, |
|
lr=args.learning_rate, |
|
betas=(args.adam_beta1, args.adam_beta2), |
|
weight_decay=args.adam_weight_decay, |
|
eps=args.adam_epsilon, |
|
) |
|
|
|
|
|
train_dataset = DreamBoothDataset( |
|
instance_data_root=args.instance_data_dir, |
|
instance_prompt=args.instance_prompt, |
|
class_data_root=args.class_data_dir if args.with_prior_preservation else None, |
|
class_prompt=args.class_prompt, |
|
tokenizer=tokenizer, |
|
size=args.resolution, |
|
center_crop=args.center_crop, |
|
) |
|
|
|
train_dataloader = torch.utils.data.DataLoader( |
|
train_dataset, |
|
batch_size=args.train_batch_size, |
|
shuffle=True, |
|
collate_fn=lambda examples: collate_fn(examples, args.with_prior_preservation), |
|
num_workers=1, |
|
) |
|
|
|
|
|
overrode_max_train_steps = False |
|
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) |
|
if args.max_train_steps is None: |
|
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch |
|
overrode_max_train_steps = True |
|
|
|
lr_scheduler = get_scheduler( |
|
args.lr_scheduler, |
|
optimizer=optimizer, |
|
num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps, |
|
num_training_steps=args.max_train_steps * args.gradient_accumulation_steps, |
|
num_cycles=args.lr_num_cycles, |
|
power=args.lr_power, |
|
) |
|
|
|
|
|
if args.train_text_encoder: |
|
unet, text_encoder, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( |
|
unet, text_encoder, optimizer, train_dataloader, lr_scheduler |
|
) |
|
else: |
|
unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( |
|
unet, optimizer, train_dataloader, lr_scheduler |
|
) |
|
|
|
|
|
|
|
weight_dtype = torch.float32 |
|
if accelerator.mixed_precision == "fp16": |
|
weight_dtype = torch.float16 |
|
elif accelerator.mixed_precision == "bf16": |
|
weight_dtype = torch.bfloat16 |
|
|
|
|
|
vae.to(accelerator.device, dtype=weight_dtype) |
|
if not args.train_text_encoder: |
|
text_encoder.to(accelerator.device, dtype=weight_dtype) |
|
|
|
|
|
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) |
|
if overrode_max_train_steps: |
|
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch |
|
|
|
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) |
|
|
|
|
|
|
|
if accelerator.is_main_process: |
|
accelerator.init_trackers("dreambooth", config=vars(args)) |
|
|
|
|
|
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps |
|
|
|
logger.info("***** Running training *****") |
|
logger.info(f" Num examples = {len(train_dataset)}") |
|
logger.info(f" Num batches each epoch = {len(train_dataloader)}") |
|
logger.info(f" Num Epochs = {args.num_train_epochs}") |
|
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") |
|
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") |
|
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") |
|
logger.info(f" Total optimization steps = {args.max_train_steps}") |
|
global_step = 0 |
|
first_epoch = 0 |
|
|
|
|
|
if args.resume_from_checkpoint: |
|
if args.resume_from_checkpoint != "latest": |
|
path = os.path.basename(args.resume_from_checkpoint) |
|
else: |
|
|
|
dirs = os.listdir(args.output_dir) |
|
dirs = [d for d in dirs if d.startswith("checkpoint")] |
|
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) |
|
path = dirs[-1] |
|
accelerator.print(f"Resuming from checkpoint {path}") |
|
accelerator.load_state(os.path.join(args.output_dir, path)) |
|
global_step = int(path.split("-")[1]) |
|
|
|
resume_global_step = global_step * args.gradient_accumulation_steps |
|
first_epoch = resume_global_step // num_update_steps_per_epoch |
|
resume_step = resume_global_step % num_update_steps_per_epoch |
|
|
|
|
|
progress_bar = tqdm(range(global_step, args.max_train_steps), disable=not accelerator.is_local_main_process) |
|
progress_bar.set_description("Steps") |
|
|
|
for epoch in range(first_epoch, args.num_train_epochs): |
|
unet.train() |
|
if args.train_text_encoder: |
|
text_encoder.train() |
|
with TorchTracemalloc() as tracemalloc: |
|
for step, batch in enumerate(train_dataloader): |
|
|
|
if args.resume_from_checkpoint and epoch == first_epoch and step < resume_step: |
|
if step % args.gradient_accumulation_steps == 0: |
|
progress_bar.update(1) |
|
if args.report_to == "wandb": |
|
accelerator.print(progress_bar) |
|
continue |
|
|
|
with accelerator.accumulate(unet): |
|
|
|
latents = vae.encode(batch["pixel_values"].to(dtype=weight_dtype)).latent_dist.sample() |
|
latents = latents * 0.18215 |
|
|
|
|
|
noise = torch.randn_like(latents) |
|
bsz = latents.shape[0] |
|
|
|
timesteps = torch.randint( |
|
0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device |
|
) |
|
timesteps = timesteps.long() |
|
|
|
|
|
|
|
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) |
|
|
|
|
|
encoder_hidden_states = text_encoder(batch["input_ids"])[0] |
|
|
|
|
|
model_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample |
|
|
|
|
|
if noise_scheduler.config.prediction_type == "epsilon": |
|
target = noise |
|
elif noise_scheduler.config.prediction_type == "v_prediction": |
|
target = noise_scheduler.get_velocity(latents, noise, timesteps) |
|
else: |
|
raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}") |
|
|
|
if args.with_prior_preservation: |
|
|
|
model_pred, model_pred_prior = torch.chunk(model_pred, 2, dim=0) |
|
target, target_prior = torch.chunk(target, 2, dim=0) |
|
|
|
|
|
loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean") |
|
|
|
|
|
prior_loss = F.mse_loss(model_pred_prior.float(), target_prior.float(), reduction="mean") |
|
|
|
|
|
loss = loss + args.prior_loss_weight * prior_loss |
|
else: |
|
loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean") |
|
|
|
accelerator.backward(loss) |
|
if accelerator.sync_gradients: |
|
params_to_clip = ( |
|
itertools.chain(unet.parameters(), text_encoder.parameters()) |
|
if args.train_text_encoder |
|
else unet.parameters() |
|
) |
|
accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm) |
|
optimizer.step() |
|
lr_scheduler.step() |
|
optimizer.zero_grad() |
|
|
|
|
|
if accelerator.sync_gradients: |
|
progress_bar.update(1) |
|
if args.report_to == "wandb": |
|
accelerator.print(progress_bar) |
|
global_step += 1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]} |
|
progress_bar.set_postfix(**logs) |
|
accelerator.log(logs, step=global_step) |
|
|
|
if ( |
|
args.validation_prompt is not None |
|
and (step + num_update_steps_per_epoch * epoch) % args.validation_steps == 0 |
|
): |
|
logger.info( |
|
f"Running validation... \n Generating {args.num_validation_images} images with prompt:" |
|
f" {args.validation_prompt}." |
|
) |
|
|
|
pipeline = DiffusionPipeline.from_pretrained( |
|
args.pretrained_model_name_or_path, |
|
safety_checker=None, |
|
revision=args.revision, |
|
) |
|
|
|
|
|
pipeline.unet = accelerator.unwrap_model(unet, keep_fp32_wrapper=True) |
|
pipeline.text_encoder = accelerator.unwrap_model(text_encoder, keep_fp32_wrapper=True) |
|
pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config) |
|
pipeline = pipeline.to(accelerator.device) |
|
pipeline.set_progress_bar_config(disable=True) |
|
|
|
|
|
pipeline.unet.eval() |
|
pipeline.text_encoder.eval() |
|
|
|
|
|
if args.seed is not None: |
|
generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) |
|
else: |
|
generator = None |
|
images = [] |
|
for _ in range(args.num_validation_images): |
|
image = pipeline(args.validation_prompt, num_inference_steps=25, generator=generator).images[0] |
|
images.append(image) |
|
|
|
for tracker in accelerator.trackers: |
|
if tracker.name == "tensorboard": |
|
np_images = np.stack([np.asarray(img) for img in images]) |
|
tracker.writer.add_images("validation", np_images, epoch, dataformats="NHWC") |
|
if tracker.name == "wandb": |
|
import wandb |
|
|
|
tracker.log( |
|
{ |
|
"validation": [ |
|
wandb.Image(image, caption=f"{i}: {args.validation_prompt}") |
|
for i, image in enumerate(images) |
|
] |
|
} |
|
) |
|
|
|
|
|
pipeline.unet.train() |
|
pipeline.text_encoder.train() |
|
|
|
del pipeline |
|
torch.cuda.empty_cache() |
|
|
|
if global_step >= args.max_train_steps: |
|
break |
|
|
|
accelerator.print(f"GPU Memory before entering the train : {b2mb(tracemalloc.begin)}") |
|
accelerator.print(f"GPU Memory consumed at the end of the train (end-begin): {tracemalloc.used}") |
|
accelerator.print(f"GPU Peak Memory consumed during the train (max-begin): {tracemalloc.peaked}") |
|
accelerator.print( |
|
f"GPU Total Peak Memory consumed during the train (max): {tracemalloc.peaked + b2mb(tracemalloc.begin)}" |
|
) |
|
|
|
accelerator.print(f"CPU Memory before entering the train : {b2mb(tracemalloc.cpu_begin)}") |
|
accelerator.print(f"CPU Memory consumed at the end of the train (end-begin): {tracemalloc.cpu_used}") |
|
accelerator.print(f"CPU Peak Memory consumed during the train (max-begin): {tracemalloc.cpu_peaked}") |
|
accelerator.print( |
|
f"CPU Total Peak Memory consumed during the train (max): {tracemalloc.cpu_peaked + b2mb(tracemalloc.cpu_begin)}" |
|
) |
|
|
|
|
|
accelerator.wait_for_everyone() |
|
if accelerator.is_main_process: |
|
if args.adapter != "full": |
|
unwarpped_unet = accelerator.unwrap_model(unet) |
|
unwarpped_unet.save_pretrained( |
|
os.path.join(args.output_dir, "unet"), state_dict=accelerator.get_state_dict(unet) |
|
) |
|
if args.train_text_encoder: |
|
unwarpped_text_encoder = accelerator.unwrap_model(text_encoder) |
|
unwarpped_text_encoder.save_pretrained( |
|
os.path.join(args.output_dir, "text_encoder"), |
|
state_dict=accelerator.get_state_dict(text_encoder), |
|
) |
|
else: |
|
pipeline = DiffusionPipeline.from_pretrained( |
|
args.pretrained_model_name_or_path, |
|
unet=accelerator.unwrap_model(unet), |
|
text_encoder=accelerator.unwrap_model(text_encoder), |
|
revision=args.revision, |
|
) |
|
pipeline.save_pretrained(args.output_dir) |
|
|
|
if args.push_to_hub: |
|
api.upload_folder( |
|
repo_id=repo_id, |
|
folder_path=args.output_dir, |
|
commit_message="End of training", |
|
run_as_future=True, |
|
) |
|
|
|
accelerator.end_training() |
|
|
|
|
|
if __name__ == "__main__": |
|
args = parse_args() |
|
main(args) |
|
|