File size: 62,029 Bytes
9d6cb8e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 |
# Copyright 2023-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import json
import os
import pickle
import re
import tempfile
from collections import OrderedDict
from dataclasses import replace
import pytest
import torch
import yaml
from diffusers import StableDiffusionPipeline
from peft import (
AdaLoraConfig,
BOFTConfig,
IA3Config,
LNTuningConfig,
LoHaConfig,
LoKrConfig,
LoraConfig,
PeftModel,
PeftType,
PrefixTuningConfig,
PromptEncoderConfig,
PromptLearningConfig,
PromptTuningConfig,
VeraConfig,
get_peft_model,
get_peft_model_state_dict,
prepare_model_for_kbit_training,
)
from peft.tuners.lora import LoraLayer
from peft.utils import _get_submodules, infer_device
from .testing_utils import get_state_dict
CONFIG_TESTING_KWARGS = (
# IA³
{
"target_modules": None,
"feedforward_modules": None,
},
# LoRA
{
"r": 8,
"lora_alpha": 32,
"target_modules": None,
"lora_dropout": 0.05,
"bias": "none",
},
# prefix tuning
{
"num_virtual_tokens": 10,
},
# prompt encoder
{
"num_virtual_tokens": 10,
"encoder_hidden_size": 32,
},
# prompt tuning
{
"num_virtual_tokens": 10,
},
# AdaLoRA
{
"target_modules": None,
},
# BOFT
{
"target_modules": None,
},
# VeRA
{
"r": 8,
"target_modules": None,
"vera_dropout": 0.05,
"projection_prng_key": 0xFF,
"d_initial": 0.1,
"save_projection": True,
"bias": "none",
},
)
CLASSES_MAPPING = {
"ia3": (IA3Config, CONFIG_TESTING_KWARGS[0]),
"lora": (LoraConfig, CONFIG_TESTING_KWARGS[1]),
"prefix_tuning": (PrefixTuningConfig, CONFIG_TESTING_KWARGS[2]),
"prompt_encoder": (PromptEncoderConfig, CONFIG_TESTING_KWARGS[3]),
"prompt_tuning": (PromptTuningConfig, CONFIG_TESTING_KWARGS[4]),
"adalora": (AdaLoraConfig, CONFIG_TESTING_KWARGS[5]),
"boft": (BOFTConfig, CONFIG_TESTING_KWARGS[6]),
"vera": (VeraConfig, CONFIG_TESTING_KWARGS[6]),
}
# Adapted from https://github.com/huggingface/transformers/blob/48327c57182fdade7f7797d1eaad2d166de5c55b/src/transformers/activations.py#LL166C7-L166C22
class ClassInstantier(OrderedDict):
def __getitem__(self, key, *args, **kwargs):
# check if any of the kwargs is inside the config class kwargs
if any(kwarg in self[key][1] for kwarg in kwargs):
new_config_kwargs = self[key][1].copy()
new_config_kwargs.update(kwargs)
return (self[key][0], new_config_kwargs)
return super().__getitem__(key, *args, **kwargs)
def get_grid_parameters(self, grid_parameters, filter_params_func=None):
r"""
Returns a list of all possible combinations of the parameters in the config classes.
Args:
grid_parameters (`dict`):
A dictionary containing the parameters to be tested. There should be at least the key "model_ids" which
contains a list of model ids to be tested. The other keys should be the name of the config class
post-fixed with "_kwargs" and the value should be a dictionary containing the parameters to be tested
for that config class.
filter_params_func (`callable`, `optional`):
A function that takes a list of tuples and returns a list of tuples. This function is used to filter
out the tests that needs for example to be skipped.
Returns:
generated_tests (`list`):
A list of tuples containing the name of the test, the model id, the config class and the config class
kwargs.
"""
generated_tests = []
model_list = grid_parameters["model_ids"]
task_type = grid_parameters["task_type"] if "task_type" in grid_parameters else None
for model_id in model_list:
for key, value in self.items():
if f"{key}_kwargs" in grid_parameters:
peft_configs = []
current_peft_config = value[1].copy()
for current_key, current_value in grid_parameters[f"{key}_kwargs"].items():
for kwarg in current_value:
current_peft_config.update({current_key: kwarg})
if task_type is not None:
current_peft_config.update({"task_type": task_type})
peft_configs.append(current_peft_config.copy())
else:
current_peft_config = value[1].copy()
if task_type is not None:
current_peft_config.update({"task_type": task_type})
peft_configs = [current_peft_config]
for peft_config in peft_configs:
generated_tests.append((f"test_{model_id}_{key}", model_id, value[0], peft_config))
if filter_params_func is not None:
generated_tests = filter_params_func(generated_tests)
return generated_tests
PeftTestConfigManager = ClassInstantier(CLASSES_MAPPING)
class PeftCommonTester:
r"""
A large testing suite for testing common functionality of the PEFT models.
Attributes:
torch_device (`torch.device`):
The device on which the tests will be run.
transformers_class (`transformers.PreTrainedModel`):
The transformers class that is being tested.
"""
torch_device = infer_device()
transformers_class = None
def prepare_inputs_for_common(self):
raise NotImplementedError
def check_modelcard(self, tmp_dirname, model):
# check the generated README.md
filename = os.path.join(tmp_dirname, "README.md")
assert os.path.exists(filename)
with open(filename, encoding="utf-8") as f:
readme = f.read()
metainfo = re.search(r"---\n(.*?)\n---", readme, re.DOTALL).group(1)
dct = yaml.safe_load(metainfo)
assert dct["library_name"] == "peft"
if hasattr(model, "config"):
assert dct["base_model"] == model.config.to_dict()["_name_or_path"]
else: # a custom model
assert "base_model" not in dct
def check_config_json(self, tmp_dirname, model):
# check the generated config.json
filename = os.path.join(tmp_dirname, "adapter_config.json")
assert os.path.exists(filename)
with open(filename, encoding="utf-8") as f:
config = json.load(f)
if hasattr(model, "config"): # custom models don't have a config attribute
assert config["base_model_name_or_path"] == model.config.to_dict()["_name_or_path"]
def _test_model_attr(self, model_id, config_cls, config_kwargs):
model = self.transformers_class.from_pretrained(model_id)
config = config_cls(
base_model_name_or_path=model_id,
**config_kwargs,
)
model = get_peft_model(model, config)
assert hasattr(model, "save_pretrained")
assert hasattr(model, "from_pretrained")
assert hasattr(model, "push_to_hub")
def _test_adapter_name(self, model_id, config_cls, config_kwargs):
model = self.transformers_class.from_pretrained(model_id)
config = config_cls(
base_model_name_or_path=model_id,
**config_kwargs,
)
model = get_peft_model(model, config, adapter_name="test-adapter")
correctly_converted = False
for n, _ in model.named_parameters():
if "test-adapter" in n:
correctly_converted = True
break
assert correctly_converted
def _test_prepare_for_training(self, model_id, config_cls, config_kwargs):
model = self.transformers_class.from_pretrained(model_id).to(self.torch_device)
config = config_cls(
base_model_name_or_path=model_id,
**config_kwargs,
)
model = get_peft_model(model, config)
dummy_input = self.prepare_inputs_for_testing()
dummy_output = model.get_input_embeddings()(dummy_input["input_ids"])
assert not dummy_output.requires_grad
# load with `prepare_model_for_kbit_training`
model = self.transformers_class.from_pretrained(model_id).to(self.torch_device)
model = prepare_model_for_kbit_training(model)
for param in model.parameters():
assert not param.requires_grad
config = config_cls(
base_model_name_or_path=model_id,
**config_kwargs,
)
model = get_peft_model(model, config)
# For backward compatibility
if hasattr(model, "enable_input_require_grads"):
model.enable_input_require_grads()
else:
def make_inputs_require_grad(module, input, output):
output.requires_grad_(True)
model.get_input_embeddings().register_forward_hook(make_inputs_require_grad)
dummy_input = self.prepare_inputs_for_testing()
dummy_output = model.get_input_embeddings()(dummy_input["input_ids"])
assert dummy_output.requires_grad
def _test_save_pretrained(self, model_id, config_cls, config_kwargs, safe_serialization=True):
# ensure that the weights are randomly initialized
if issubclass(config_cls, LoraConfig):
config_kwargs = config_kwargs.copy()
config_kwargs["init_lora_weights"] = False
if issubclass(config_cls, IA3Config):
config_kwargs = config_kwargs.copy()
config_kwargs["init_ia3_weights"] = False
if issubclass(config_cls, VeraConfig):
config_kwargs = config_kwargs.copy()
config_kwargs["init_weights"] = False
model = self.transformers_class.from_pretrained(model_id)
config = config_cls(
base_model_name_or_path=model_id,
**config_kwargs,
)
model = get_peft_model(model, config)
model = model.to(self.torch_device)
with tempfile.TemporaryDirectory() as tmp_dirname:
if safe_serialization:
model.save_pretrained(tmp_dirname)
else:
model.save_pretrained(tmp_dirname, safe_serialization=False)
model_from_pretrained = self.transformers_class.from_pretrained(model_id)
model_from_pretrained = PeftModel.from_pretrained(model_from_pretrained, tmp_dirname)
# check if the state dicts are equal
if issubclass(config_cls, PromptEncoderConfig):
# For prompt encoding, when loading the whole state_dict, there are differences, therefore, only load
# adapter-specific weights for comparison.
# TODO: is this expected?
state_dict = get_peft_model_state_dict(model, unwrap_compiled=True)
state_dict_from_pretrained = get_peft_model_state_dict(model_from_pretrained, unwrap_compiled=True)
else:
state_dict = get_state_dict(model, unwrap_compiled=True)
state_dict_from_pretrained = get_state_dict(model_from_pretrained, unwrap_compiled=True)
# check if tensors equal
for key in state_dict.keys():
assert torch.allclose(
state_dict[key].to(self.torch_device), state_dict_from_pretrained[key].to(self.torch_device)
)
target_adapter_filename = "adapter_model.safetensors" if safe_serialization else "adapter_model.bin"
# check if `adapter_model.safetensors` is present
assert os.path.exists(os.path.join(tmp_dirname, target_adapter_filename))
# check if `adapter_config.json` is present
assert os.path.exists(os.path.join(tmp_dirname, "adapter_config.json"))
# check if `model.safetensors` is not present
assert not os.path.exists(os.path.join(tmp_dirname, "model.safetensors"))
# check if `config.json` is not present
assert not os.path.exists(os.path.join(tmp_dirname, "config.json"))
self.check_modelcard(tmp_dirname, model)
self.check_config_json(tmp_dirname, model)
def _test_save_pretrained_selected_adapters(self, model_id, config_cls, config_kwargs, safe_serialization=True):
if issubclass(config_cls, AdaLoraConfig):
# AdaLora does not support adding more than 1 adapter
return pytest.skip(f"Test not applicable for {config_cls}")
# ensure that the weights are randomly initialized
if issubclass(config_cls, LoraConfig):
config_kwargs = config_kwargs.copy()
config_kwargs["init_lora_weights"] = False
elif issubclass(config_cls, IA3Config):
config_kwargs = config_kwargs.copy()
config_kwargs["init_ia3_weights"] = False
elif hasattr(config_cls, "init_weights"):
config_kwargs["init_weights"] = False
model = self.transformers_class.from_pretrained(model_id)
config = config_cls(
base_model_name_or_path=model_id,
**config_kwargs,
)
model = get_peft_model(model, config)
model = model.to(self.torch_device)
new_adapter_config = config_cls(
base_model_name_or_path=model_id,
**config_kwargs,
)
model.add_adapter("new_adapter", new_adapter_config)
with tempfile.TemporaryDirectory() as tmp_dirname:
if safe_serialization:
model.save_pretrained(tmp_dirname)
else:
model.save_pretrained(tmp_dirname, safe_serialization=False)
model_from_pretrained = self.transformers_class.from_pretrained(model_id)
model_from_pretrained = PeftModel.from_pretrained(model_from_pretrained, tmp_dirname)
new_adapter_dir = os.path.join(tmp_dirname, "new_adapter")
model_from_pretrained.load_adapter(new_adapter_dir, "new_adapter")
# check if the state dicts are equal
if issubclass(config_cls, PromptEncoderConfig):
# For prompt encoding, when loading the whole state_dict, there are differences, therefore, only load
# adapter-specific weights for comparison.
# TODO: is this expected?
state_dict = get_peft_model_state_dict(model, unwrap_compiled=True)
state_dict_from_pretrained = get_peft_model_state_dict(model_from_pretrained, unwrap_compiled=True)
else:
state_dict = get_state_dict(model, unwrap_compiled=True)
state_dict_from_pretrained = get_state_dict(model_from_pretrained, unwrap_compiled=True)
# check if same keys
assert state_dict.keys() == state_dict_from_pretrained.keys()
# check if tensors equal
for key in state_dict.keys():
assert torch.allclose(
state_dict[key].to(self.torch_device), state_dict_from_pretrained[key].to(self.torch_device)
)
target_adapter_filename = "adapter_model.safetensors" if safe_serialization else "adapter_model.bin"
# check if `adapter_model.safetensors` is present
assert os.path.exists(os.path.join(tmp_dirname, target_adapter_filename))
assert os.path.exists(os.path.join(new_adapter_dir, target_adapter_filename))
# check if `adapter_config.json` is present
assert os.path.exists(os.path.join(tmp_dirname, "adapter_config.json"))
assert os.path.exists(os.path.join(new_adapter_dir, "adapter_config.json"))
# check if `model.safetensors` is not present
assert not os.path.exists(os.path.join(tmp_dirname, "model.safetensors"))
assert not os.path.exists(os.path.join(new_adapter_dir, "model.safetensors"))
# check if `config.json` is not present
assert not os.path.exists(os.path.join(tmp_dirname, "config.json"))
assert not os.path.exists(os.path.join(new_adapter_dir, "config.json"))
self.check_modelcard(tmp_dirname, model)
self.check_config_json(tmp_dirname, model)
with tempfile.TemporaryDirectory() as tmp_dirname:
model.save_pretrained(tmp_dirname, selected_adapters=["default"])
model_from_pretrained = self.transformers_class.from_pretrained(model_id)
model_from_pretrained = PeftModel.from_pretrained(model_from_pretrained, tmp_dirname)
assert "default" in model_from_pretrained.peft_config.keys()
assert "new_adapter" not in model_from_pretrained.peft_config.keys()
def _test_from_pretrained_config_construction(self, model_id, config_cls, config_kwargs):
model = self.transformers_class.from_pretrained(model_id)
config = config_cls(base_model_name_or_path=model_id, **config_kwargs)
model = get_peft_model(model, config)
model = model.to(self.torch_device)
with tempfile.TemporaryDirectory() as tmp_dirname:
model.save_pretrained(tmp_dirname)
model_from_pretrained = self.transformers_class.from_pretrained(model_id)
model_from_pretrained = PeftModel.from_pretrained(
model_from_pretrained, tmp_dirname, is_trainable=False, config=config
)
assert model_from_pretrained.peft_config["default"].inference_mode
assert model_from_pretrained.peft_config["default"] is config
def _test_merge_layers_fp16(self, model_id, config_cls, config_kwargs):
if config_cls not in (LoraConfig, IA3Config, AdaLoraConfig, LoHaConfig, LoKrConfig):
# Merge layers only supported for LoRA and IA³
return pytest.skip(f"Test not applicable for {config_cls}")
if ("gpt2" in model_id.lower()) and (config_cls != LoraConfig):
self.skipTest("Merging GPT2 adapters not supported for IA³ (yet)")
model = self.transformers_class.from_pretrained(model_id, torch_dtype=torch.float16)
config = config_cls(
base_model_name_or_path=model_id,
**config_kwargs,
)
model = get_peft_model(model, config)
model = model.to(device="cpu", dtype=torch.float16)
model.eval()
# This should simply work
_ = model.merge_and_unload()
def _test_merge_layers_nan(self, model_id, config_cls, config_kwargs):
if config_cls not in (LoraConfig, IA3Config, AdaLoraConfig, LoHaConfig, LoKrConfig, VeraConfig):
# Merge layers only supported for LoRA and IA³
return
if ("gpt2" in model_id.lower()) and (config_cls != LoraConfig):
self.skipTest("Merging GPT2 adapters not supported for IA³ (yet)")
model = self.transformers_class.from_pretrained(model_id)
config = config_cls(
base_model_name_or_path=model_id,
**config_kwargs,
)
model = get_peft_model(model, config)
model = model.to(self.torch_device)
dummy_input = self.prepare_inputs_for_testing()
model.eval()
# This should work
logits_unmerged = model(**dummy_input)[0]
model = model.merge_and_unload()
logits_merged = model(**dummy_input)[0]
assert torch.allclose(logits_unmerged, logits_merged, atol=1e-3, rtol=1e-3)
model = self.transformers_class.from_pretrained(model_id)
config = config_cls(
base_model_name_or_path=model_id,
**config_kwargs,
)
model = get_peft_model(model, config)
model = model.to(self.torch_device)
for name, module in model.named_parameters():
if "lora_A" in name or "ia3" in name or "lora_E" in name or "lora_B" in name or "vera_lambda" in name:
module.data[0] = torch.nan
with pytest.raises(
ValueError, match="NaNs detected in the merged weights. The adapter default seems to be broken"
):
model = model.merge_and_unload(safe_merge=True)
for name, module in model.named_parameters():
if "lora_A" in name or "ia3" in name or "lora_E" in name or "lora_B" in name or "vera_lambda" in name:
module.data[0] = torch.inf
with pytest.raises(
ValueError, match="NaNs detected in the merged weights. The adapter default seems to be broken"
):
model = model.merge_and_unload(safe_merge=True)
def _test_merge_layers(self, model_id, config_cls, config_kwargs):
if issubclass(config_cls, PromptLearningConfig):
return pytest.skip(f"Test not applicable for {config_cls}")
if issubclass(config_cls, BOFTConfig):
return pytest.skip(f"Test not applicable for {config_cls}")
if ("gpt2" in model_id.lower()) and (config_cls != LoraConfig):
self.skipTest("Merging GPT2 adapters not supported for IA³ (yet)")
model = self.transformers_class.from_pretrained(model_id)
config = config_cls(
base_model_name_or_path=model_id,
**config_kwargs,
)
model = get_peft_model(model, config)
model = model.to(self.torch_device)
dummy_input = self.prepare_inputs_for_testing()
model.eval()
logits = model(**dummy_input)[0]
model.merge_adapter()
logits_merged = model(**dummy_input)[0]
model.unmerge_adapter()
logits_unmerged = model(**dummy_input)[0]
model = model.merge_and_unload()
logits_merged_unloaded = model(**dummy_input)[0]
atol, rtol = 1e-4, 1e-4
if (config.peft_type == "IA3") and (model_id == "Conv2d"):
# for some reason, the IA³ Conv2d introduces a larger error
atol, rtol = 0.3, 0.01
assert torch.allclose(logits, logits_merged, atol=atol, rtol=rtol)
assert torch.allclose(logits, logits_unmerged, atol=atol, rtol=rtol)
assert torch.allclose(logits, logits_merged_unloaded, atol=atol, rtol=rtol)
# For this test to work, weights should not be initialized to identity transform (e.g.
# init_lora_weights should be False).
transformers_model = self.transformers_class.from_pretrained(model_id).to(self.torch_device)
logits_transformers = transformers_model(**dummy_input)[0]
assert not torch.allclose(logits_merged, logits_transformers, atol=1e-10, rtol=1e-10)
# test that the logits are identical after a save-load-roundtrip
if hasattr(model, "save_pretrained"):
# model is a transformers model
with tempfile.TemporaryDirectory() as tmp_dirname:
model.save_pretrained(tmp_dirname)
model_from_pretrained = self.transformers_class.from_pretrained(tmp_dirname).to(self.torch_device)
else:
# model is not a transformers model
model_from_pretrained = pickle.loads(pickle.dumps(model))
logits_merged_from_pretrained = model_from_pretrained(**dummy_input)[0]
assert torch.allclose(logits_merged, logits_merged_from_pretrained, atol=atol, rtol=rtol)
def _test_merge_layers_multi(self, model_id, config_cls, config_kwargs):
supported_peft_types = [PeftType.LORA, PeftType.LOHA, PeftType.LOKR, PeftType.IA3, PeftType.OFT, PeftType.BOFT]
if ("gpt2" in model_id.lower()) and (config_cls == IA3Config):
self.skipTest("Merging GPT2 adapters not supported for IA³ (yet)")
config = config_cls(
base_model_name_or_path=model_id,
**config_kwargs,
)
if config.peft_type not in supported_peft_types:
return
model = self.transformers_class.from_pretrained(model_id)
model = get_peft_model(model, config)
model = model.to(self.torch_device)
dummy_input = self.prepare_inputs_for_testing()
model.eval()
with torch.inference_mode():
logits_adapter_1 = model(**dummy_input)[0]
model.add_adapter("adapter-2", config)
model.set_adapter("adapter-2")
model.eval()
with torch.inference_mode():
logits_adapter_2 = model(**dummy_input)[0]
assert not torch.allclose(logits_adapter_1, logits_adapter_2, atol=1e-3, rtol=1e-3)
model.set_adapter("default")
with torch.inference_mode():
logits_adapter_1_after_set = model(**dummy_input)[0]
assert torch.allclose(logits_adapter_1_after_set, logits_adapter_1, atol=1e-3, rtol=1e-3)
model_copy = copy.deepcopy(model)
model_copy_2 = copy.deepcopy(model)
model_merged_all = model.merge_and_unload(adapter_names=["adapter-2", "default"])
with torch.inference_mode():
logits_merged_all = model_merged_all(**dummy_input)[0]
assert not torch.allclose(logits_merged_all, logits_adapter_2, atol=1e-3, rtol=1e-3)
assert not torch.allclose(logits_merged_all, logits_adapter_1, atol=1e-3, rtol=1e-3)
model_merged_adapter_2 = model_copy.merge_and_unload(adapter_names=["adapter-2"])
with torch.inference_mode():
logits_merged_adapter_2 = model_merged_adapter_2(**dummy_input)[0]
assert torch.allclose(logits_merged_adapter_2, logits_adapter_2, atol=1e-3, rtol=1e-3)
model_merged_adapter_default = model_copy_2.merge_and_unload(adapter_names=["default"])
with torch.inference_mode():
logits_merged_adapter_default = model_merged_adapter_default(**dummy_input)[0]
assert torch.allclose(logits_merged_adapter_default, logits_adapter_1, atol=1e-3, rtol=1e-3)
def _test_merge_layers_is_idempotent(self, model_id, config_cls, config_kwargs):
model = self.transformers_class.from_pretrained(model_id)
config = config_cls(
base_model_name_or_path=model_id,
**config_kwargs,
)
model = get_peft_model(model, config)
model = model.to(self.torch_device)
model.eval()
torch.manual_seed(0)
model.merge_adapter()
logits_0 = model(**self.prepare_inputs_for_testing())[0]
# merging again should not change anything
# also check warning:
with pytest.warns(UserWarning, match="All adapters are already merged, nothing to do"):
model.merge_adapter()
logits_1 = model(**self.prepare_inputs_for_testing())[0]
assert torch.allclose(logits_0, logits_1, atol=1e-6, rtol=1e-6)
def _test_safe_merge(self, model_id, config_cls, config_kwargs):
torch.manual_seed(0)
model = self.transformers_class.from_pretrained(model_id)
config = config_cls(
base_model_name_or_path=model_id,
**config_kwargs,
)
model = model.to(self.torch_device).eval()
inputs = self.prepare_inputs_for_testing()
logits_base = model(**inputs)[0]
model = get_peft_model(model, config).eval()
logits_peft = model(**inputs)[0]
# Initializing with LN tuning cannot be configured to change the outputs (unlike init_lora_weights=False)
if not issubclass(config_cls, LNTuningConfig):
# sanity check that the logits are different
assert not torch.allclose(logits_base, logits_peft, atol=1e-6, rtol=1e-6)
model_unloaded = model.merge_and_unload(safe_merge=True)
logits_unloaded = model_unloaded(**inputs)[0]
# check that the logits are the same after unloading
assert torch.allclose(logits_peft, logits_unloaded, atol=1e-6, rtol=1e-6)
def _test_mixed_adapter_batches(self, model_id, config_cls, config_kwargs):
# Test for mixing different adapters in a single batch by passing the adapter_names argument
if config_cls not in (LoraConfig,):
return pytest.skip(f"Mixed adapter batches not supported for {config_cls}")
config = config_cls(
base_model_name_or_path=model_id,
**config_kwargs,
)
torch.manual_seed(0)
model = self.transformers_class.from_pretrained(model_id)
model = get_peft_model(model, config, adapter_name="adapter0").eval()
model.add_adapter("adapter1", config)
model = model.to(self.torch_device).eval()
dummy_input = self.prepare_inputs_for_testing()
# ensure that we have at least 3 samples for this test
dummy_input = {k: torch.cat([v for _ in range(3)]) for k, v in dummy_input.items()}
with torch.inference_mode():
with model.disable_adapter():
output_base = model(**dummy_input)[0]
logits_base = model.generate(**dummy_input, return_dict_in_generate=True, output_scores=True).scores[0]
model.set_adapter("adapter0")
with torch.inference_mode():
output_adapter0 = model(**dummy_input)[0]
logits_adapter0 = model.generate(**dummy_input, return_dict_in_generate=True, output_scores=True).scores[0]
model.set_adapter("adapter1")
with torch.inference_mode():
output_adapter1 = model(**dummy_input)[0]
logits_adapter1 = model.generate(**dummy_input, return_dict_in_generate=True, output_scores=True).scores[0]
atol, rtol = 1e-4, 1e-4
# sanity check that there are enough outputs and that they are different
assert len(output_base) == len(output_adapter0) == len(output_adapter1) >= 3
assert len(logits_base) == len(logits_adapter0) == len(logits_adapter1) >= 3
assert not torch.allclose(output_base, output_adapter0, atol=atol, rtol=rtol)
assert not torch.allclose(output_base, output_adapter1, atol=atol, rtol=rtol)
assert not torch.allclose(output_adapter0, output_adapter1, atol=atol, rtol=rtol)
assert not torch.allclose(logits_base, logits_adapter0, atol=atol, rtol=rtol)
assert not torch.allclose(logits_base, logits_adapter1, atol=atol, rtol=rtol)
assert not torch.allclose(logits_adapter0, logits_adapter1, atol=atol, rtol=rtol)
# alternate between base model, adapter0, and adapter1
adapters = ["__base__", "adapter0", "adapter1"]
dummy_input["adapter_names"] = [adapters[i % 3] for i in (range(len(dummy_input["input_ids"])))]
with torch.inference_mode():
output_mixed = model(**dummy_input)[0]
logits_mixed = model.generate(**dummy_input, return_dict_in_generate=True, output_scores=True).scores[0]
assert torch.allclose(output_base[::3], output_mixed[::3], atol=atol, rtol=rtol)
assert torch.allclose(output_adapter0[1::3], output_mixed[1::3], atol=atol, rtol=rtol)
assert torch.allclose(output_adapter1[2::3], output_mixed[2::3], atol=atol, rtol=rtol)
assert torch.allclose(logits_base[::3], logits_mixed[::3], atol=atol, rtol=rtol)
assert torch.allclose(logits_adapter0[1::3], logits_mixed[1::3], atol=atol, rtol=rtol)
assert torch.allclose(logits_adapter1[2::3], logits_mixed[2::3], atol=atol, rtol=rtol)
def _test_generate(self, model_id, config_cls, config_kwargs):
model = self.transformers_class.from_pretrained(model_id)
config = config_cls(
base_model_name_or_path=model_id,
**config_kwargs,
)
model = get_peft_model(model, config)
model = model.to(self.torch_device)
inputs = self.prepare_inputs_for_testing()
# check if `generate` works
_ = model.generate(**inputs)
def _test_generate_pos_args(self, model_id, config_cls, config_kwargs, raises_err: bool):
model = self.transformers_class.from_pretrained(model_id)
config = config_cls(
base_model_name_or_path=model_id,
**config_kwargs,
)
model = get_peft_model(model, config)
model = model.to(self.torch_device)
inputs = self.prepare_inputs_for_testing()
if raises_err:
with pytest.raises(TypeError):
# check if `generate` raises an error if positional arguments are passed
_ = model.generate(inputs["input_ids"])
else:
# check if `generate` works if positional arguments are passed
_ = model.generate(inputs["input_ids"])
def _test_generate_half_prec(self, model_id, config_cls, config_kwargs):
if config_cls not in (IA3Config, LoraConfig, PrefixTuningConfig):
return pytest.skip(f"Test not applicable for {config_cls}")
if self.torch_device == "mps": # BFloat16 is not supported on MPS
return pytest.skip("BFloat16 is not supported on MPS")
model = self.transformers_class.from_pretrained(model_id, torch_dtype=torch.bfloat16)
config = config_cls(
base_model_name_or_path=model_id,
**config_kwargs,
)
model = get_peft_model(model, config)
model = model.to(self.torch_device)
input_ids = torch.LongTensor([[1, 1, 1], [2, 1, 2]]).to(self.torch_device)
attention_mask = torch.LongTensor([[1, 1, 1], [1, 0, 1]]).to(self.torch_device)
# check if `generate` works
_ = model.generate(input_ids=input_ids, attention_mask=attention_mask)
def _test_prefix_tuning_half_prec_conversion(self, model_id, config_cls, config_kwargs):
if config_cls not in (PrefixTuningConfig,):
return pytest.skip(f"Test not applicable for {config_cls}")
config = config_cls(
base_model_name_or_path=model_id,
**config_kwargs,
)
model = self.transformers_class.from_pretrained(model_id)
model = get_peft_model(model, config)
model = model.half()
assert model.base_model_torch_dtype == torch.float16
def _test_training(self, model_id, config_cls, config_kwargs):
if issubclass(config_cls, PromptLearningConfig):
return pytest.skip(f"Test not applicable for {config_cls}")
if (config_cls == AdaLoraConfig) and ("roberta" in model_id.lower()):
# TODO: no gradients on the "dense" layer, other layers work, not sure why
self.skipTest("AdaLora with RoBERTa does not work correctly")
model = self.transformers_class.from_pretrained(model_id)
config = config_cls(
base_model_name_or_path=model_id,
**config_kwargs,
)
model = get_peft_model(model, config)
model = model.to(self.torch_device)
inputs = self.prepare_inputs_for_testing()
# check if `training` works
output = model(**inputs)[0]
loss = output.sum()
loss.backward()
parameter_prefix = model.prefix
for n, param in model.named_parameters():
if (parameter_prefix in n) or ("modules_to_save" in n):
assert param.grad is not None
else:
assert param.grad is None
def _test_inference_safetensors(self, model_id, config_cls, config_kwargs):
if (config_cls == PrefixTuningConfig) and ("deberta" in model_id.lower()):
# TODO: raises an error:
# TypeError: DebertaModel.forward() got an unexpected keyword argument 'past_key_values'
self.skipTest("DeBERTa with PrefixTuning does not work correctly")
config = config_cls(
base_model_name_or_path=model_id,
**config_kwargs,
)
model = self.transformers_class.from_pretrained(model_id)
model = get_peft_model(model, config)
model = model.to(self.torch_device)
inputs = self.prepare_inputs_for_testing()
# check if `training` works
output = model(**inputs)[0]
logits = output[0]
loss = output.sum()
loss.backward()
# set to eval mode, since things like dropout can affect the output otherwise
model.eval()
logits = model(**inputs)[0][0]
with tempfile.TemporaryDirectory() as tmp_dirname:
model.save_pretrained(tmp_dirname, safe_serialization=True)
assert "adapter_model.safetensors" in os.listdir(tmp_dirname)
assert "adapter_model.bin" not in os.listdir(tmp_dirname)
model_from_pretrained = self.transformers_class.from_pretrained(model_id)
model_from_pretrained = PeftModel.from_pretrained(model_from_pretrained, tmp_dirname).to(self.torch_device)
logits_from_pretrained = model_from_pretrained(**inputs)[0][0]
assert torch.allclose(logits, logits_from_pretrained, atol=1e-4, rtol=1e-4)
def _test_training_layer_indexing(self, model_id, config_cls, config_kwargs):
if config_cls not in (LoraConfig,):
return pytest.skip(f"Test not applicable for {config_cls}")
config = config_cls(
base_model_name_or_path=model_id,
layers_to_transform=[0],
**config_kwargs,
)
model = self.transformers_class.from_pretrained(model_id)
model = get_peft_model(model, config)
model = model.to(self.torch_device)
inputs = self.prepare_inputs_for_testing()
# check if `training` works
output = model(**inputs)[0]
logits = output[0]
loss = output.sum()
loss.backward()
nb_trainable = 0
for n, param in model.named_parameters():
if "lora" in n:
assert param.grad is not None
nb_trainable += 1
else:
assert param.grad is None
with tempfile.TemporaryDirectory() as tmp_dirname:
model.save_pretrained(tmp_dirname)
model_from_pretrained = self.transformers_class.from_pretrained(model_id)
model_from_pretrained = PeftModel.from_pretrained(model_from_pretrained, tmp_dirname).to(self.torch_device)
logits_from_pretrained = model_from_pretrained(**inputs)[0][0]
assert torch.allclose(logits, logits_from_pretrained, atol=1e-4, rtol=1e-4)
model = self.transformers_class.from_pretrained(model_id)
config = config_cls(
base_model_name_or_path=model_id,
**config_kwargs,
)
model = get_peft_model(model, config)
nb_trainable_all = 0
for n, param in model.named_parameters():
if "lora" in n:
nb_trainable_all += 1
assert nb_trainable < nb_trainable_all
def _test_training_gradient_checkpointing(self, model_id, config_cls, config_kwargs):
if issubclass(config_cls, PromptLearningConfig):
return pytest.skip(f"Test not applicable for {config_cls}")
if (config_cls == AdaLoraConfig) and ("roberta" in model_id.lower()):
# TODO: no gradients on the "dense" layer, other layers work, not sure why
self.skipTest("AdaLora with RoBERTa does not work correctly")
model = self.transformers_class.from_pretrained(model_id)
if not getattr(model, "supports_gradient_checkpointing", False):
return pytest.skip(f"Model {model_id} does not support gradient checkpointing")
model.gradient_checkpointing_enable()
config = config_cls(
base_model_name_or_path=model_id,
**config_kwargs,
)
model = get_peft_model(model, config)
model = model.to(self.torch_device)
inputs = self.prepare_inputs_for_testing()
# check if `training` works
output = model(**inputs)[0]
loss = output.sum()
loss.backward()
for n, param in model.named_parameters():
if model.prefix in n:
assert param.grad is not None
else:
assert param.grad is None
def _test_peft_model_device_map(self, model_id, config_cls, config_kwargs):
if config_cls not in (LoraConfig,):
return pytest.skip(f"Test not applicable for {config_cls}")
config = config_cls(
base_model_name_or_path=model_id,
**config_kwargs,
)
model = self.transformers_class.from_pretrained(model_id)
model = get_peft_model(model, config)
model = model.to(self.torch_device)
with tempfile.TemporaryDirectory() as tmp_dirname:
model.save_pretrained(tmp_dirname)
model_from_pretrained = self.transformers_class.from_pretrained(model_id)
_ = PeftModel.from_pretrained(model_from_pretrained, tmp_dirname, device_map={"": "cpu"}).to(
self.torch_device
)
def _test_training_prompt_learning_tasks(self, model_id, config_cls, config_kwargs):
if not issubclass(config_cls, PromptLearningConfig):
return pytest.skip(f"Test not applicable for {config_cls}")
model = self.transformers_class.from_pretrained(model_id)
config = config_cls(
base_model_name_or_path=model_id,
**config_kwargs,
)
model = get_peft_model(model, config)
model = model.to(self.torch_device)
inputs = self.prepare_inputs_for_testing()
# check if `training` works
output = model(**inputs)[0]
loss = output.sum()
loss.backward()
# check that prompt encoder has grads
for param in model.prompt_encoder.parameters():
assert param.grad is not None
def _test_delete_adapter(self, model_id, config_cls, config_kwargs):
supported_peft_types = [
PeftType.LORA,
PeftType.LOHA,
PeftType.LOKR,
PeftType.IA3,
PeftType.OFT,
PeftType.BOFT,
PeftType.VERA,
]
# IA3 does not support deleting adapters yet, but it just needs to be added
# AdaLora does not support multiple adapters
config = config_cls(
base_model_name_or_path=model_id,
**config_kwargs,
)
if config.peft_type not in supported_peft_types:
return pytest.skip(f"Test not applicable for {config.peft_type}")
model = self.transformers_class.from_pretrained(model_id)
adapter_to_delete = "delete_me"
model = get_peft_model(model, config)
model.add_adapter(adapter_to_delete, config)
model.set_adapter(adapter_to_delete)
model = model.to(self.torch_device)
model.delete_adapter(adapter_to_delete)
assert adapter_to_delete not in model.peft_config
assert model.active_adapters == ["default"]
key_list = [key for key, _ in model.named_modules()]
for key in key_list:
_, target, _ = _get_submodules(model, key)
attributes_to_check = getattr(target, "adapter_layer_names", []) + getattr(target, "other_param_names", [])
for attr in attributes_to_check:
assert adapter_to_delete not in getattr(target, attr)
# check that we can also delete the last remaining adapter
model.delete_adapter("default")
assert "default" not in model.peft_config
assert model.active_adapters == []
input = self.prepare_inputs_for_testing()
# note: we cannot call model(**input) because PeftModel always expects there to be at least one adapter
model.base_model(**input) # should not raise an error
def _test_delete_inactive_adapter(self, model_id, config_cls, config_kwargs):
# same as test_delete_adapter, but this time an inactive adapter is deleted
supported_peft_types = [PeftType.LORA, PeftType.LOHA, PeftType.LOKR, PeftType.IA3, PeftType.OFT, PeftType.BOFT]
# IA3 does not support deleting adapters yet, but it just needs to be added
# AdaLora does not support multiple adapters
config = config_cls(
base_model_name_or_path=model_id,
**config_kwargs,
)
if config.peft_type not in supported_peft_types:
return pytest.skip(f"Test not applicable for {config.peft_type}")
model = self.transformers_class.from_pretrained(model_id)
adapter_to_delete = "delete_me"
model = get_peft_model(model, config)
model.add_adapter(adapter_to_delete, config)
# "delete_me" is added but not activated
model = model.to(self.torch_device)
model.delete_adapter(adapter_to_delete)
assert adapter_to_delete not in model.peft_config
assert model.active_adapters == ["default"]
key_list = [key for key, _ in model.named_modules()]
for key in key_list:
_, target, _ = _get_submodules(model, key)
attributes_to_check = getattr(target, "adapter_layer_names", []) + getattr(target, "other_param_names", [])
for attr in attributes_to_check:
assert adapter_to_delete not in getattr(target, attr)
# check that we can also delete the last remaining adapter
model.delete_adapter("default")
assert "default" not in model.peft_config
assert model.active_adapters == []
input = self.prepare_inputs_for_testing()
# note: we cannot call model(**input) because PeftModel always expects there to be at least one adapter
model.base_model(**input) # should not raise an error
def _test_unload_adapter(self, model_id, config_cls, config_kwargs):
model = self.transformers_class.from_pretrained(model_id)
config = config_cls(
base_model_name_or_path=model_id,
**config_kwargs,
)
model = get_peft_model(model, config)
model = model.to(self.torch_device)
if config.peft_type not in ("LORA", "ADALORA", "IA3", "BOFT", "VERA"):
with pytest.raises(AttributeError):
model = model.unload()
else:
dummy_input = self.prepare_inputs_for_testing()
logits_with_adapter = model(**dummy_input)[0]
transformers_model = self.transformers_class.from_pretrained(model_id).to(self.torch_device)
logits_transformers = transformers_model(**dummy_input)[0]
model.eval()
model = model.unload()
logits_unload = model(**dummy_input)[0]
assert not torch.allclose(logits_with_adapter, logits_unload, atol=1e-10, rtol=1e-10)
assert torch.allclose(logits_transformers, logits_unload, atol=1e-4, rtol=1e-4)
def _test_weighted_combination_of_adapters_lora(self, model, config, adapter_list, weight_list):
model.add_adapter(adapter_list[1], config)
model.add_adapter(adapter_list[2], replace(config, r=20))
model = model.to(self.torch_device)
# test re-weighting single adapter
model.add_weighted_adapter([adapter_list[0]], [weight_list[0]], "single_adapter_reweighting")
# test svd re-weighting with multiple adapters
model.add_weighted_adapter(adapter_list[1:], weight_list[1:], "multi_adapter_svd_reweighting")
# test ties_svd re-weighting with multiple adapters
model.add_weighted_adapter(
adapter_list[1:],
weight_list[1:],
"multi_adapter_ties_svd_reweighting",
combination_type="ties_svd",
density=0.5,
)
# test dare_linear_svd re-weighting with multiple adapters
model.add_weighted_adapter(
adapter_list[1:],
weight_list[1:],
"multi_adapter_dare_linear_svd_reweighting",
combination_type="dare_linear_svd",
density=0.5,
)
# test dare_ties_svd re-weighting with multiple adapters
model.add_weighted_adapter(
adapter_list[1:],
weight_list[1:],
"multi_adapter_dare_ties_svd_reweighting",
combination_type="dare_ties_svd",
density=0.5,
)
# test magnitude_prune_svd re-weighting with multiple adapters
model.add_weighted_adapter(
adapter_list[1:],
weight_list[1:],
"multi_adapter_magnitude_prune_svd_reweighting",
combination_type="magnitude_prune_svd",
density=0.5,
)
# test cat re-weighting with multiple adapters
model.add_weighted_adapter(
adapter_list[1:], weight_list[1:], "multi_adapter_cat_reweighting", combination_type="cat"
)
# test linear re-weighting with multiple adapters
model.add_weighted_adapter(
adapter_list[:2], weight_list[:2], "multi_adapter_linear_reweighting", combination_type="linear"
)
# test ties re-weighting with multiple adapters
model.add_weighted_adapter(
adapter_list[:2], weight_list[:2], "multi_adapter_ties_reweighting", combination_type="ties", density=0.5
)
# test dare_linear re-weighting with multiple adapters
model.add_weighted_adapter(
adapter_list[:2],
weight_list[:2],
"multi_adapter_dare_linear_reweighting",
combination_type="dare_linear",
density=0.5,
)
# test dare_ties re-weighting with multiple adapters
model.add_weighted_adapter(
adapter_list[:2],
weight_list[:2],
"multi_adapter_dare_ties_reweighting",
combination_type="dare_ties",
density=0.5,
)
# test magnitude_prune re-weighting with multiple adapters
model.add_weighted_adapter(
adapter_list[:2],
weight_list[:2],
"multi_adapter_magnitude_prune_reweighting",
combination_type="magnitude_prune",
density=0.5,
)
# test linear re-weighting with multiple adapters with only first adapter having non zero weight
model.add_weighted_adapter(
adapter_list[:2],
[weight_list[0], 0],
"multi_adapter_linear_reweighting_single_enabled",
combination_type="linear",
)
with pytest.raises(ValueError):
model.add_weighted_adapter(
adapter_list[1:],
weight_list[1:],
"multi_adapter_linear_reweighting_uneven_r",
combination_type="linear",
)
with pytest.raises(ValueError):
model.add_weighted_adapter(
adapter_list[1:],
weight_list[1:],
"multi_adapter_ties_reweighting_uneven_r",
combination_type="ties",
density=0.5,
)
with pytest.raises(ValueError):
model.add_weighted_adapter(
adapter_list[1:],
weight_list[1:],
"multi_adapter_dare_linear_reweighting_uneven_r",
combination_type="dare_linear",
density=0.5,
)
with pytest.raises(ValueError):
model.add_weighted_adapter(
adapter_list[1:],
weight_list[1:],
"multi_adapter_dare_ties_reweighting_uneven_r",
combination_type="dare_ties",
density=0.5,
)
with pytest.raises(ValueError):
model.add_weighted_adapter(
adapter_list[1:],
weight_list[1:],
"multi_adapter_magnitude_prune_reweighting_uneven_r",
combination_type="magnitude_prune",
density=0.5,
)
new_adapters = [
"single_adapter_reweighting",
"multi_adapter_svd_reweighting",
"multi_adapter_ties_svd_reweighting",
"multi_adapter_dare_linear_svd_reweighting",
"multi_adapter_dare_ties_svd_reweighting",
"multi_adapter_magnitude_prune_svd_reweighting",
"multi_adapter_cat_reweighting",
"multi_adapter_linear_reweighting",
"multi_adapter_linear_reweighting_single_enabled",
"multi_adapter_ties_reweighting",
"multi_adapter_dare_linear_reweighting",
"multi_adapter_dare_ties_reweighting",
"multi_adapter_magnitude_prune_reweighting",
]
for new_adapter in new_adapters:
assert new_adapter in model.peft_config
key_list = [key for key, _ in model.named_modules()]
for key in key_list:
_, target, _ = _get_submodules(model, key)
if isinstance(target, LoraLayer):
for adapter_name in new_adapters:
if "single" in adapter_name:
new_delta_weight = target.get_delta_weight(adapter_name)
weighted_original_delta_weights = target.get_delta_weight(adapter_list[0]) * weight_list[0]
assert torch.allclose(new_delta_weight, weighted_original_delta_weights, atol=1e-4, rtol=1e-4)
elif "svd" in adapter_name:
assert target.r[adapter_name] == 20
elif "linear" in adapter_name:
assert target.r[adapter_name] == 8
elif "cat" in adapter_name:
assert target.r[adapter_name] == 28
dummy_input = self.prepare_inputs_for_testing()
model.eval()
for adapter_name in new_adapters:
# ensuring new adapters pass the forward loop
model.set_adapter(adapter_name)
assert model.active_adapter == adapter_name
assert model.active_adapters == [adapter_name]
model(**dummy_input)[0]
def _test_weighted_combination_of_adapters_ia3(self, model, config, adapter_list, weight_list):
model.add_adapter(adapter_list[1], config)
model.add_adapter(adapter_list[2], config)
model = model.to(self.torch_device)
# test re-weighting single adapter
model.add_weighted_adapter([adapter_list[0]], [weight_list[0]], "single_adapter_reweighting")
# test re-weighting with multiple adapters
model.add_weighted_adapter(adapter_list[1:], weight_list[1:], "multi_adapter_reweighting")
new_adapters = [
"single_adapter_reweighting",
"multi_adapter_reweighting",
]
for new_adapter in new_adapters:
assert new_adapter in model.peft_config
dummy_input = self.prepare_inputs_for_testing()
model.eval()
for adapter_name in new_adapters:
# ensuring new adapters pass the forward loop
model.set_adapter(adapter_name)
assert model.active_adapter == adapter_name
assert model.active_adapters == [adapter_name]
model(**dummy_input)[0]
def _test_weighted_combination_of_adapters(self, model_id, config_cls, config_kwargs):
if issubclass(config_cls, AdaLoraConfig):
# AdaLora does not support adding more than 1 adapter
return pytest.skip(f"Test not applicable for {config_cls}")
adapter_list = ["adapter1", "adapter_2", "adapter_3"]
weight_list = [0.5, 1.5, 1.5]
# Initialize the config
config = config_cls(
base_model_name_or_path=model_id,
**config_kwargs,
)
if not isinstance(config, (LoraConfig, IA3Config)):
# This test is only applicable for Lora and IA3 configs
return pytest.skip(f"Test not applicable for {config}")
model = self.transformers_class.from_pretrained(model_id)
model = get_peft_model(model, config, adapter_list[0])
if isinstance(config, LoraConfig):
self._test_weighted_combination_of_adapters_lora(model, config, adapter_list, weight_list)
elif isinstance(config, IA3Config):
self._test_weighted_combination_of_adapters_ia3(model, config, adapter_list, weight_list)
else:
pytest.skip(f"Test not applicable for {config}")
def _test_disable_adapter(self, model_id, config_cls, config_kwargs):
task_type = config_kwargs.get("task_type")
if (task_type == "SEQ_2_SEQ_LM") and (config_cls in (PromptTuningConfig, PromptEncoderConfig)):
self.skipTest("Seq2Seq + prompt tuning/prompt encoder does not work with disabling adapters")
def get_output(model):
# helper function that works with different model types
torch.manual_seed(0)
if hasattr(model, "generate"):
# let's check the scores, not the output ids, since the latter can easily be identical even if the
# weights are slightly changed
output = model.generate(**input, return_dict_in_generate=True, output_scores=True).scores[0]
# take element 0, as output is a tuple
else:
output = model(**input)
if hasattr(output, "images"): # for SD
import numpy as np
img = output.images[0]
return torch.from_numpy(np.array(img))
return output
# initialize model
model = self.transformers_class.from_pretrained(model_id).to(self.torch_device)
# output from BASE MODEL
input = self.prepare_inputs_for_testing()
output_before = get_output(model)
# output from PEFT MODEL
if hasattr(self, "instantiate_sd_peft"):
# SD models are instantiated differently
peft_model = self.instantiate_sd_peft(model_id, config_cls, config_kwargs)
else:
config = config_cls(
base_model_name_or_path=model_id,
**config_kwargs,
)
peft_model = get_peft_model(model, config)
output_peft = get_output(peft_model)
# first check trivial case is not true that peft does not affect the output; for this to work, init_lora_weight
# must be False
if isinstance(peft_model, StableDiffusionPipeline):
# for SD, check that most pixels have different values
assert (output_before != output_peft).float().mean() > 0.8
else:
assert not torch.allclose(output_before, output_peft)
# output with DISABLED ADAPTER
if isinstance(peft_model, StableDiffusionPipeline):
with peft_model.unet.disable_adapter():
with peft_model.text_encoder.disable_adapter():
output_peft_disabled = get_output(peft_model)
# for SD, very rarely, a pixel can differ
assert (output_before != output_peft_disabled).float().mean() < 1e-4
else:
with peft_model.disable_adapter():
output_peft_disabled = get_output(peft_model)
assert torch.allclose(output_before, output_peft_disabled, atol=1e-6, rtol=1e-6)
# after leaving the disable_adapter context, the output should be the same as with enabled adapter again
# see #1501
output_peft_after_disabled = get_output(peft_model)
assert torch.allclose(output_peft, output_peft_after_disabled, atol=1e-6, rtol=1e-6)
# TODO: add tests to check if disabling adapters works after calling merge_adapter
def _test_adding_multiple_adapters_with_bias_raises(self, model_id, config_cls, config_kwargs):
# When trying to add multiple adapters with bias in Lora, AdaLora or BOFTConfig, an error should be
# raised. Also, the peft model should not be left in a half-initialized state.
if not issubclass(config_cls, (LoraConfig, AdaLoraConfig, BOFTConfig)):
return pytest.skip(f"Test not applicable for {config_cls}")
config_kwargs = config_kwargs.copy()
config_kwargs["bias"] = "all"
config = config_cls(
base_model_name_or_path=model_id,
**config_kwargs,
)
model = self.transformers_class.from_pretrained(model_id)
model = get_peft_model(model, config, "adapter0")
if config_cls == LoraConfig or config_cls == AdaLoraConfig:
with pytest.raises(ValueError):
model.add_adapter("adapter1", replace(config, r=20))
if config_cls == BOFTConfig:
with pytest.raises(ValueError):
model.add_adapter("adapter1", replace(config, boft_block_num=1, boft_block_size=0))
# (superficial) test that the model is not left in a half-initialized state when adding an adapter fails
assert "adapter1" not in model.peft_config
assert "adapter1" not in model.base_model.peft_config
def _test_passing_input_embeds_works(self, test_name, model_id, config_cls, config_kwargs):
# https://github.com/huggingface/peft/issues/727
model = self.transformers_class.from_pretrained(model_id)
config = config_cls(
base_model_name_or_path=model_id,
**config_kwargs,
)
model = get_peft_model(model, config, adapter_name="test-adapter").to(self.torch_device)
dummy_input = self.prepare_inputs_for_testing()
inputs_embeds = model.get_input_embeddings()(dummy_input["input_ids"])
# just check that no error is raised
model.forward(inputs_embeds=inputs_embeds)
|