File size: 3,003 Bytes
9d6cb8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
# Copyright 2023-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import pytest
import torch
from torch import nn
from transformers import AutoModelForCausalLM

from peft import LoraConfig, get_peft_model


class ModelWithModuleDict(nn.Module):
    def __init__(self):
        super().__init__()
        self.other_layer = nn.Linear(10, 10)
        self.module = nn.ModuleDict({"foo": nn.Linear(10, 10)})

    def forward(self):
        return self.module["foo"](torch.rand(1, 10))


class ModelWithModuleList(nn.Module):
    def __init__(self):
        super().__init__()
        self.other_layer = nn.Linear(10, 10)
        self.module = nn.ModuleList([nn.Linear(10, 10)])

    def forward(self):
        return self.module[0](torch.rand(1, 10))


class ModelWithParameterDict(nn.Module):
    def __init__(self):
        super().__init__()
        self.other_layer = nn.Linear(10, 10)
        self.module = nn.ParameterDict({"foo": nn.Parameter(torch.rand(10, 10))})

    def forward(self):
        return self.module["foo"]


class ModelWithParameterList(nn.Module):
    def __init__(self):
        super().__init__()
        self.other_layer = nn.Linear(10, 10)
        self.module = nn.ParameterList([nn.Parameter(torch.rand(10, 10))])

    def forward(self):
        return self.module[0]


@pytest.mark.parametrize(
    "cls", [ModelWithModuleDict, ModelWithModuleList, ModelWithParameterDict, ModelWithParameterList]
)
def test_modules_to_save_targets_module_dict_raises(cls):
    model = cls()
    peft_config = LoraConfig(
        target_modules=["other_layer"],
        modules_to_save=["module"],
    )
    model()  # sanity check that the model would normally work

    msg = "modules_to_save cannot be applied to modules of type"
    with pytest.raises(TypeError, match=msg):
        get_peft_model(model=model, peft_config=peft_config)


def test_get_peft_model_revision_warning(tmp_path):
    base_model_id = "peft-internal-testing/tiny-random-BertModel"
    base_revision = "v2.0.0"
    base_model = AutoModelForCausalLM.from_pretrained(base_model_id, revision=base_revision).eval()
    lora_config = LoraConfig(revision=base_revision)

    overwrite_revision = "main"
    overwrite_warning = f"peft config has already set base model revision to {base_revision}, overwriting with revision {overwrite_revision}"
    with pytest.warns(UserWarning, match=overwrite_warning):
        _ = get_peft_model(base_model, lora_config, revision=overwrite_revision)