File size: 38,774 Bytes
9d6cb8e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 |
# Copyright 2023-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import itertools
import os
import re
import tempfile
import unittest
import pytest
import torch
from parameterized import parameterized
from torch import nn
from transformers import AutoModelForCausalLM
from peft import (
AdaLoraConfig,
LoHaConfig,
LoKrConfig,
LoraConfig,
OFTConfig,
PeftMixedModel,
PrefixTuningConfig,
get_peft_model,
)
from peft.tuners.tuners_utils import BaseTunerLayer
from peft.utils import infer_device
class SimpleNet(nn.Module):
def __init__(self, bias=True):
super().__init__()
# note: out_features must be > rank or else OFT will be an identity transform
self.lin0 = nn.Linear(10, 20, bias=bias)
self.relu = nn.ReLU()
self.lin1 = nn.Linear(20, 16, bias=bias)
def forward(self, X):
X = X.float()
X = self.lin0(X)
X = self.relu(X)
X = self.lin1(X)
return X
def _param_name_func(testcase_func, param_num, params):
# for parameterized tests in TextMixedAdapterTypes
config0, config1 = params[0]
name0 = config0.__class__.__name__[: -len("Config")]
name1 = config1.__class__.__name__[: -len("Config")]
if name0 != name1:
return f"{testcase_func.__name__}_{param_num}_{name0}_{name1}"
return f"{testcase_func.__name__}_{param_num}_{name0}_x2"
class TestMixedAdapterTypes(unittest.TestCase):
torch_device = infer_device()
def _get_model(self, model_cls, peft_config=None, adapter_name=None, seed=0, mixed=True):
torch.manual_seed(0) # always use seed 0 for base model, seed for adapters may differ
base_model = model_cls().eval().to(self.torch_device)
if peft_config is None:
return base_model
torch.manual_seed(seed)
assert adapter_name is not None
peft_model = get_peft_model(base_model, peft_config, adapter_name=adapter_name, mixed=mixed)
return peft_model.eval().to(self.torch_device)
def _check_mixed_outputs(self, model_cls, config0, config1, input, *, is_commutative):
# This test checks different combinations of adapter0, adapter1, or combinations of the two, and whether
# outputs are the same/different, depending on context. If we pass is_commutative=True, it means that the order
# of adapters does not matter, and we expect the same output regardless of the order in which adapters are
# applied.
# We have to very careful with resetting the random seed each time it is used, otherwise the adapters may be
# initialized with different values, and the test will fail.
atol = 1e-5
rtol = 1e-5
seed0 = 0
seed1 = 1
# base model
base_model = self._get_model(model_cls)
output_base = base_model(input)
assert torch.isfinite(output_base).all()
# adapter 0
peft_model_0 = self._get_model(model_cls, config0, "adapter0", seed=seed0)
output_config0 = peft_model_0(input)
assert torch.isfinite(output_config0).all()
assert not torch.allclose(output_base, output_config0, atol=atol, rtol=rtol)
# adapter 1
peft_model_1 = self._get_model(model_cls, config1, "adapter1", seed=seed1)
output_config1 = peft_model_1(input)
assert torch.isfinite(output_config1).all()
assert not torch.allclose(output_base, output_config1, atol=atol, rtol=rtol)
assert not torch.allclose(output_config0, output_config1, atol=atol, rtol=rtol)
# adapter 0 + 1
peft_model_01 = self._get_model(model_cls, config0, "adapter0", seed=seed0)
torch.manual_seed(seed1)
peft_model_01.add_adapter("adapter1", config1)
peft_model_01.set_adapter(["adapter0", "adapter1"])
output_mixed_01 = peft_model_01(input)
# check the number of tuner layer types
tuner_layers = [mod for mod in peft_model_01.modules() if isinstance(mod, BaseTunerLayer)]
tuner_types = {type(tuner_layer) for tuner_layer in tuner_layers}
if type(config0) == type(config1):
assert len(tuner_types) == 1
else:
assert len(tuner_types) == 2
assert peft_model_01.active_adapters == ["adapter0", "adapter1"]
assert torch.isfinite(output_mixed_01).all()
assert not torch.allclose(output_config0, output_mixed_01, atol=atol, rtol=rtol)
assert not torch.allclose(output_config1, output_mixed_01, atol=atol, rtol=rtol)
if is_commutative:
delta0 = output_config0 - output_base
delta1 = output_config1 - output_base
delta_mixed_01 = output_mixed_01 - output_base
assert torch.allclose((delta0 + delta1), delta_mixed_01, atol=atol, rtol=rtol)
# adapter 1 + 0
peft_model_10 = self._get_model(model_cls, config1, "adapter1", seed=seed1)
torch.manual_seed(seed0)
peft_model_10.add_adapter("adapter0", config0)
peft_model_10.set_adapter(["adapter1", "adapter0"])
output_mixed_10 = peft_model_10(input)
# check the number of tuner layer types
tuner_layers = [mod for mod in peft_model_10.modules() if isinstance(mod, BaseTunerLayer)]
tuner_types = {type(tuner_layer) for tuner_layer in tuner_layers}
if type(config0) == type(config1):
assert len(tuner_types) == 1
else:
assert len(tuner_types) == 2
assert peft_model_10.active_adapters == ["adapter1", "adapter0"]
assert torch.isfinite(output_mixed_10).all()
assert not torch.allclose(output_config0, output_mixed_10, atol=atol, rtol=rtol)
assert not torch.allclose(output_config1, output_mixed_10, atol=atol, rtol=rtol)
if is_commutative:
assert torch.allclose(output_mixed_01, output_mixed_10, atol=atol, rtol=rtol)
# turn around the order of the adapters of the 0 + 1 mixed model, should behave like the 0 + 1 mixed model
peft_model_10.set_adapter(["adapter0", "adapter1"])
output_mixed_reversed = peft_model_10(input)
# check the number of tuner layer types
tuner_layers = [mod for mod in peft_model_10.modules() if isinstance(mod, BaseTunerLayer)]
tuner_types = {type(tuner_layer) for tuner_layer in tuner_layers}
if type(config0) == type(config1):
assert len(tuner_types) == 1
else:
assert len(tuner_types) == 2
assert peft_model_10.active_adapters == ["adapter0", "adapter1"]
assert torch.isfinite(output_mixed_reversed).all()
assert not torch.allclose(output_mixed_reversed, output_config0, atol=atol, rtol=rtol)
assert not torch.allclose(output_mixed_reversed, output_config1, atol=atol, rtol=rtol)
if is_commutative:
assert torch.allclose(output_mixed_reversed, output_mixed_01, atol=atol, rtol=rtol)
assert torch.allclose(output_mixed_reversed, output_mixed_10, atol=atol, rtol=rtol)
def _check_merging(self, model_cls, config0, config1, input):
# Ensure that when merging mixed adapters, the result is the same as when applying the adapters separately.
# Merging requires a bit higher tolerance for some adapters, which can also vary depending on CPU vs GPU.
atol = 1e-4
rtol = 1e-4
seed0 = 0
seed1 = 1
# adapter 0 + 1
peft_model_01 = self._get_model(model_cls, config0, "adapter0", seed=seed0)
torch.manual_seed(seed1)
peft_model_01.add_adapter("adapter1", config1)
peft_model_01.set_adapter(["adapter0", "adapter1"])
output_mixed_01 = peft_model_01(input)
model_merged_01 = peft_model_01.merge_and_unload()
output_merged_01 = model_merged_01(input)
assert torch.allclose(output_mixed_01, output_merged_01, atol=atol, rtol=rtol)
# adapter 1 + 0
peft_model_10 = self._get_model(model_cls, config1, "adapter1", seed=seed1)
torch.manual_seed(seed0)
peft_model_10.add_adapter("adapter0", config0)
peft_model_10.set_adapter(["adapter1", "adapter0"])
output_mixed_10 = peft_model_10(input)
model_merged_10 = peft_model_10.merge_and_unload()
output_merged_10 = model_merged_10(input)
assert torch.allclose(output_mixed_10, output_merged_10, atol=atol, rtol=rtol)
def _check_unload(self, model_cls, config0, config1, input):
# Ensure that we can unload the base model without merging
atol = 1e-5
rtol = 1e-5
seed0 = 0
seed1 = 1
base_model = self._get_model(model_cls)
output_base = base_model(input)
# adapter 0 + 1
peft_model_01 = self._get_model(model_cls, config0, "adapter0", seed=seed0)
torch.manual_seed(seed1)
peft_model_01.add_adapter("adapter1", config1)
peft_model_01.set_adapter(["adapter0", "adapter1"])
output_mixed = peft_model_01(input)
# unload
model_unloaded = peft_model_01.unload()
output_unloaded = model_unloaded(input)
assert not torch.allclose(output_mixed, output_unloaded, atol=atol, rtol=rtol)
assert torch.allclose(output_base, output_unloaded, atol=atol, rtol=rtol)
def _check_disable(self, model_cls, config0, config1, input):
# Ensure that we can disable adapters
atol = 1e-5
rtol = 1e-5
seed0 = 0
seed1 = 1
# base model
base_model = self._get_model(model_cls)
output_base = base_model(input)
# adapter 0
peft_model_0 = self._get_model(model_cls, config0, "adapter0", seed=seed0)
output_config0 = peft_model_0(input)
with peft_model_0.disable_adapter():
output_disabled0 = peft_model_0(input)
assert not torch.allclose(output_base, output_config0, atol=atol, rtol=rtol)
assert torch.allclose(output_base, output_disabled0, atol=atol, rtol=rtol)
# adapter 1
peft_model_1 = self._get_model(model_cls, config1, "adapter1", seed=seed1)
output_config1 = peft_model_1(input)
with peft_model_1.disable_adapter():
output_disabled1 = peft_model_1(input)
assert not torch.allclose(output_base, output_config1, atol=atol, rtol=rtol)
assert torch.allclose(output_base, output_disabled1, atol=atol, rtol=rtol)
# adapter 0 + 1
peft_model_01 = self._get_model(model_cls, config0, "adapter0", seed=seed0)
torch.manual_seed(seed1)
peft_model_01.add_adapter("adapter1", config1)
peft_model_01.set_adapter(["adapter0", "adapter1"])
output_mixed_01 = peft_model_01(input)
with peft_model_01.disable_adapter():
output_disabled01 = peft_model_01(input)
assert not torch.allclose(output_base, output_mixed_01, atol=atol, rtol=rtol)
assert torch.allclose(output_base, output_disabled01, atol=atol, rtol=rtol)
# adapter 1 + 0
peft_model_10 = self._get_model(model_cls, config1, "adapter1", seed=seed1)
torch.manual_seed(seed0)
peft_model_10.add_adapter("adapter0", config0)
peft_model_10.set_adapter(["adapter1", "adapter0"])
output_mixed_10 = peft_model_10(input)
with peft_model_10.disable_adapter():
output_disabled10 = peft_model_10(input)
assert not torch.allclose(output_base, output_mixed_10, atol=atol, rtol=rtol)
assert torch.allclose(output_base, output_disabled10, atol=atol, rtol=rtol)
def _check_loading(self, model_cls, config0, config1, input, *, is_commutative):
# Check that we can load two adapters into the same model
# Note that we save the adapters using a normal PeftModel because PeftMixModel doesn't support saving yet
atol = 1e-5
rtol = 1e-5
seed0 = 0
seed1 = 1
with tempfile.TemporaryDirectory() as tmp_dirname:
# SAVING
# adapter 0: note that we set mixed=False because mixed models don't support saving (yet)
peft_model_0 = self._get_model(model_cls, config0, "adapter0", seed=seed0, mixed=False)
output_config0 = peft_model_0(input)
peft_model_0.save_pretrained(os.path.join(tmp_dirname, "adapter0"))
# adapter 1: note that we set mixed=False because mixed models don't support saving (yet)
peft_model_1 = self._get_model(model_cls, config1, "adapter1", seed=seed1, mixed=False)
output_config1 = peft_model_1(input)
peft_model_1.save_pretrained(os.path.join(tmp_dirname, "adapter1"))
# adapter 0 + 1
peft_model_01 = self._get_model(model_cls, config0, "adapter0", seed=seed0)
torch.manual_seed(seed1)
peft_model_01.add_adapter("adapter1", config1)
peft_model_01.set_adapter(["adapter0", "adapter1"])
output_mixed_01 = peft_model_01(input)
# adapter 1 + 0
peft_model_10 = self._get_model(model_cls, config1, "adapter1", seed=seed1)
torch.manual_seed(seed0)
peft_model_10.add_adapter("adapter0", config0)
peft_model_10.set_adapter(["adapter1", "adapter0"])
output_mixed_10 = peft_model_10(input)
# LOADING
# adapter 0
base_model = self._get_model(model_cls)
# Notes:
# Path is tmp_dirname/adapter0/adapter0 because non-default adapters are saved in a subfolder.
# As a sanity check, we should set a completely different seed here. That way, we ensure that the the
# weights are not just randomly initialized exactly to the same values as before.
torch.manual_seed(123456)
peft_model_loaded0 = PeftMixedModel.from_pretrained(
base_model, os.path.join(tmp_dirname, "adapter0", "adapter0"), "adapter0"
)
output_loaded0 = peft_model_loaded0(input)
assert torch.allclose(output_config0, output_loaded0, atol=atol, rtol=rtol)
# adapter 1
base_model = self._get_model(model_cls)
torch.manual_seed(654321) # setting a completely different seed here should not affect the result
peft_model_loaded1 = PeftMixedModel.from_pretrained(
base_model, os.path.join(tmp_dirname, "adapter1", "adapter1"), "adapter1"
)
output_loaded1 = peft_model_loaded1(input)
assert torch.allclose(output_config1, output_loaded1, atol=atol, rtol=rtol)
# adapter 0 + 1
base_model = self._get_model(model_cls)
torch.manual_seed(97531) # setting a completely different seed here should not affect the result
peft_model_loaded_01 = PeftMixedModel.from_pretrained(
base_model, os.path.join(tmp_dirname, "adapter0", "adapter0"), "adapter0"
)
peft_model_loaded_01.load_adapter(os.path.join(tmp_dirname, "adapter1", "adapter1"), "adapter1")
# at this point, "adapter0" should still be active
assert peft_model_loaded_01.active_adapters == ["adapter0"]
output_loaded01_0 = peft_model_loaded_01(input)
assert torch.allclose(output_config0, output_loaded01_0, atol=atol, rtol=rtol)
# activate adapter1
peft_model_loaded_01.set_adapter(["adapter1"])
assert peft_model_loaded_01.active_adapters == ["adapter1"]
output_loaded01_1 = peft_model_loaded_01(input)
assert torch.allclose(output_config1, output_loaded01_1, atol=atol, rtol=rtol)
# activate both adapters
peft_model_loaded_01.set_adapter(["adapter0", "adapter1"])
output_loaded01 = peft_model_loaded_01(input)
assert torch.allclose(output_mixed_01, output_loaded01, atol=atol, rtol=rtol)
# adapter 1 + 0
base_model = self._get_model(model_cls)
torch.manual_seed(445566) # setting a completely different seed here should not affect the result
peft_model_loaded_10 = PeftMixedModel.from_pretrained(
base_model, os.path.join(tmp_dirname, "adapter1", "adapter1"), "adapter1"
)
peft_model_loaded_10.load_adapter(os.path.join(tmp_dirname, "adapter0", "adapter0"), "adapter0")
# at this point, "adapter1" should still be active
assert peft_model_loaded_10.active_adapters == ["adapter1"]
output_loaded10_1 = peft_model_loaded_10(input)
assert torch.allclose(output_config1, output_loaded10_1, atol=atol, rtol=rtol)
# activate adapter1
peft_model_loaded_10.set_adapter(["adapter0"])
assert peft_model_loaded_10.active_adapters == ["adapter0"]
output_loaded10_0 = peft_model_loaded_10(input)
assert torch.allclose(output_config0, output_loaded10_0, atol=atol, rtol=rtol)
# activate both adapters
peft_model_loaded_10.set_adapter(["adapter1", "adapter0"])
output_loaded10 = peft_model_loaded_10(input)
assert torch.allclose(output_mixed_10, output_loaded10, atol=atol, rtol=rtol)
if is_commutative:
assert torch.allclose(output_loaded01, output_loaded10, atol=atol, rtol=rtol)
assert torch.allclose(output_loaded10, output_mixed_01, atol=atol, rtol=rtol)
@parameterized.expand(
itertools.combinations(
[
LoraConfig(target_modules=["lin0"], init_lora_weights=False),
LoHaConfig(target_modules=["lin0"], init_weights=False),
LoKrConfig(target_modules=["lin0"], init_weights=False),
AdaLoraConfig(target_modules=["lin0"], init_lora_weights=False),
OFTConfig(target_modules=["lin0"], init_weights=False),
],
r=2,
),
name_func=_param_name_func,
)
def test_target_first_layer(self, config0, config1):
input = torch.arange(90).reshape(9, 10).to(self.torch_device)
self._check_mixed_outputs(SimpleNet, config0, config1, input, is_commutative=False)
self._check_merging(SimpleNet, config0, config1, input)
self._check_unload(SimpleNet, config0, config1, input)
self._check_disable(SimpleNet, config1, config0, input)
self._check_loading(SimpleNet, config0, config1, input, is_commutative=False)
@parameterized.expand(
itertools.combinations(
[
LoraConfig(target_modules=["lin1"], init_lora_weights=False),
LoHaConfig(target_modules=["lin1"], init_weights=False),
LoKrConfig(target_modules=["lin1"], init_weights=False),
AdaLoraConfig(target_modules=["lin1"], init_lora_weights=False),
OFTConfig(target_modules=["lin1"], init_weights=False),
],
r=2,
),
name_func=_param_name_func,
)
def test_target_last_layer(self, config0, config1):
# We are targeting the last layer of the SimpleNet. Therefore, since the adapters only add their activations
# to the output, the results should be commutative. This would *not* work if the adapters do something more
# complex or if we target an earlier layer, because of the non-linearity would destroy the commutativity.
input = torch.arange(90).reshape(9, 10).to(self.torch_device)
# OFT is not commutative, as it's not a linear operation on the inputs
is_commutative = not any(isinstance(config, OFTConfig) for config in [config0, config1])
self._check_mixed_outputs(SimpleNet, config0, config1, input, is_commutative=is_commutative)
self._check_merging(SimpleNet, config0, config1, input)
self._check_unload(SimpleNet, config0, config1, input)
self._check_disable(SimpleNet, config1, config0, input)
self._check_loading(SimpleNet, config0, config1, input, is_commutative=is_commutative)
@parameterized.expand(
itertools.combinations(
[
LoraConfig(init_lora_weights=False),
LoHaConfig(init_weights=False),
LoKrConfig(init_weights=False),
AdaLoraConfig(init_lora_weights=False),
OFTConfig(init_weights=False),
],
r=2,
),
name_func=_param_name_func,
)
def test_target_different_layers(self, config0, config1):
input = torch.arange(90).reshape(9, 10).to(self.torch_device)
config0.target_modules = ["lin0"]
config1.target_modules = ["lin1"]
self._check_mixed_outputs(SimpleNet, config0, config1, input, is_commutative=False)
self._check_merging(SimpleNet, config0, config1, input)
self._check_unload(SimpleNet, config0, config1, input)
self._check_disable(SimpleNet, config0, config1, input)
self._check_loading(SimpleNet, config0, config1, input, is_commutative=False)
# same, but switch target_modules around
config0.target_modules = ["lin1"]
config1.target_modules = ["lin0"]
self._check_mixed_outputs(SimpleNet, config1, config0, input, is_commutative=False)
self._check_merging(SimpleNet, config1, config0, input)
self._check_unload(SimpleNet, config1, config0, input)
self._check_disable(SimpleNet, config1, config0, input)
self._check_loading(SimpleNet, config1, config0, input, is_commutative=False)
@parameterized.expand(
[
(
LoraConfig(target_modules=["lin1"], init_lora_weights=False),
LoraConfig(target_modules=["lin1"], init_lora_weights=False),
),
(
LoHaConfig(target_modules=["lin1"], init_weights=False),
LoHaConfig(target_modules=["lin1"], init_weights=False),
),
(
LoKrConfig(target_modules=["lin1"], init_weights=False),
LoKrConfig(target_modules=["lin1"], init_weights=False),
),
(
AdaLoraConfig(target_modules=["lin1"], init_lora_weights=False),
AdaLoraConfig(target_modules=["lin1"], init_lora_weights=False),
),
(
OFTConfig(target_modules=["lin1"], init_weights=False),
OFTConfig(target_modules=["lin1"], init_weights=False),
),
],
name_func=_param_name_func,
)
def test_target_last_layer_same_type(self, config0, config1):
input = torch.arange(90).reshape(9, 10).to(self.torch_device)
# OFT is not commutative, as it's not a linear operation on the inputs
is_commutative = not any(isinstance(config, OFTConfig) for config in [config0, config1])
self._check_mixed_outputs(SimpleNet, config0, config1, input, is_commutative=is_commutative)
self._check_merging(SimpleNet, config0, config1, input)
self._check_unload(SimpleNet, config0, config1, input)
self._check_disable(SimpleNet, config1, config0, input)
@parameterized.expand(
[
(
LoraConfig(target_modules=["lin0"], init_lora_weights=False),
LoraConfig(target_modules=["lin0"], init_lora_weights=False),
),
(
LoHaConfig(target_modules=["lin0"], init_weights=False),
LoHaConfig(target_modules=["lin0"], init_weights=False),
),
(
LoKrConfig(target_modules=["lin0"], init_weights=False),
LoKrConfig(target_modules=["lin0"], init_weights=False),
),
(
AdaLoraConfig(target_modules=["lin0"], init_lora_weights=False),
AdaLoraConfig(target_modules=["lin0"], init_lora_weights=False),
),
(
OFTConfig(target_modules=["lin0"], init_weights=False),
OFTConfig(target_modules=["lin0"], init_weights=False),
),
],
name_func=_param_name_func,
)
def test_target_first_layer_same_type(self, config0, config1):
input = torch.arange(90).reshape(9, 10).to(self.torch_device)
self._check_mixed_outputs(SimpleNet, config0, config1, input, is_commutative=False)
self._check_merging(SimpleNet, config0, config1, input)
self._check_unload(SimpleNet, config0, config1, input)
self._check_disable(SimpleNet, config1, config0, input)
self._check_loading(SimpleNet, config0, config1, input, is_commutative=False)
def test_deeply_nested(self):
# a somewhat absurdly nested model using different adapter types
atol = 1e-5
rtol = 1e-5
torch.manual_seed(0)
model = SimpleNet().eval().to(self.torch_device)
input = torch.arange(90).reshape(9, 10).to(self.torch_device)
output_base = model(input)
config0 = LoraConfig(r=4, lora_alpha=4, target_modules=["lin0", "lin1"], init_lora_weights=False)
peft_model = get_peft_model(model, config0, "adapter0", mixed=True)
config1 = LoHaConfig(r=4, alpha=4, target_modules=["lin0"], init_weights=False)
peft_model.add_adapter("adapter1", config1)
config2 = AdaLoraConfig(r=4, lora_alpha=4, target_modules=["lin1"], init_lora_weights=False)
peft_model.add_adapter("adapter2", config2)
config3 = LoKrConfig(r=4, alpha=4, target_modules=["lin0", "lin1"], init_weights=False)
peft_model.add_adapter("adapter3", config3)
config4 = OFTConfig(r=8, target_modules=["lin0", "lin1"], init_weights=False)
peft_model.add_adapter("adapter4", config4)
peft_model.set_adapter(["adapter0", "adapter1", "adapter2", "adapter3", "adapter4"])
output_mixed = peft_model(input)
assert torch.isfinite(output_base).all()
assert not torch.allclose(output_base, output_mixed, atol=atol, rtol=rtol)
# test disabling all adapters
with peft_model.disable_adapter():
output_disabled = peft_model(input)
assert torch.isfinite(output_disabled).all()
assert torch.allclose(output_base, output_disabled, atol=atol, rtol=rtol)
assert not torch.allclose(output_mixed, output_disabled, atol=atol, rtol=rtol)
# merge and unload all adapters
model_copy = copy.deepcopy(peft_model)
model = model_copy.merge_and_unload()
output_merged = model(input)
assert torch.isfinite(output_merged).all()
assert torch.allclose(output_mixed, output_merged, atol=atol, rtol=rtol)
# merge and unload only adapter1 and adapter3
model_copy = copy.deepcopy(peft_model)
model_copy.set_adapter(["adapter1", "adapter3"])
output_13 = model_copy(input)
assert torch.isfinite(output_13).all()
assert not torch.allclose(output_mixed, output_13, atol=atol, rtol=rtol)
model_copy.set_adapter(["adapter0", "adapter1", "adapter2", "adapter3", "adapter4"])
model_merged_unloaded = model_copy.merge_and_unload(adapter_names=["adapter1", "adapter3"])
output_merged_13 = model_merged_unloaded(input)
assert torch.isfinite(output_merged_13).all()
assert torch.allclose(output_13, output_merged_13, atol=atol, rtol=rtol)
# test unloading
model_copy = copy.deepcopy(peft_model)
model_unloaded = model_copy.unload()
output_unloaded = model_unloaded(input)
assert torch.isfinite(output_unloaded).all()
assert torch.allclose(output_base, output_unloaded, atol=atol, rtol=rtol)
def test_delete_adapter(self):
atol = 1e-5
rtol = 1e-5
torch.manual_seed(0)
model = SimpleNet().eval().to(self.torch_device)
input = torch.arange(90).reshape(9, 10).to(self.torch_device)
output_base = model(input)
# create adapter0
torch.manual_seed(0)
config0 = LoraConfig(r=4, lora_alpha=4, target_modules=["lin0", "lin1"], init_lora_weights=False)
peft_model = get_peft_model(model, config0, "adapter0", mixed=True)
output_0 = peft_model(input)
assert not torch.allclose(output_base, output_0, atol=atol, rtol=rtol)
# add adapter1
torch.manual_seed(1)
config1 = LoHaConfig(r=4, alpha=4, target_modules=["lin0"], init_weights=False)
peft_model.add_adapter("adapter1", config1)
peft_model.set_adapter(["adapter0", "adapter1"])
output_01 = peft_model(input)
assert not torch.allclose(output_base, output_01, atol=atol, rtol=rtol)
assert not torch.allclose(output_0, output_01, atol=atol, rtol=rtol)
# delete adapter1
peft_model.delete_adapter("adapter1")
assert peft_model.active_adapters == ["adapter0"]
output_deleted_1 = peft_model(input)
assert torch.allclose(output_0, output_deleted_1, atol=atol, rtol=rtol)
msg = re.escape("Adapter(s) ['adapter1'] not found, available adapters: ['adapter0']")
with pytest.raises(ValueError, match=msg):
peft_model.set_adapter(["adapter0", "adapter1"])
# re-add adapter1
torch.manual_seed(1)
peft_model.add_adapter("adapter1", config1)
peft_model.set_adapter(["adapter0", "adapter1"])
output_01_readded = peft_model(input)
assert not torch.allclose(output_base, output_01_readded, atol=atol, rtol=rtol)
# same as above, but this time delete adapter0 first
torch.manual_seed(0)
model = SimpleNet().eval().to(self.torch_device)
torch.manual_seed(0)
peft_model = get_peft_model(model, config0, "adapter0", mixed=True)
torch.manual_seed(1)
peft_model.add_adapter("adapter1", config1)
peft_model.delete_adapter("adapter0")
assert peft_model.active_adapters == ["adapter1"]
output_deleted_0 = peft_model(input)
assert not torch.allclose(output_deleted_0, output_base, atol=atol, rtol=rtol)
assert not torch.allclose(output_deleted_0, output_01, atol=atol, rtol=rtol)
msg = re.escape("Adapter(s) ['adapter0'] not found, available adapters: ['adapter1']")
with pytest.raises(ValueError, match=msg):
peft_model.set_adapter(["adapter0", "adapter1"])
peft_model.delete_adapter("adapter1")
assert peft_model.active_adapters == []
output_deleted_01 = peft_model(input)
assert torch.allclose(output_deleted_01, output_base, atol=atol, rtol=rtol)
def test_modules_to_save(self):
model = SimpleNet().eval().to(self.torch_device)
config0 = LoraConfig(target_modules=["lin0"], modules_to_save=["lin1"])
peft_model = get_peft_model(model, config0, "adapter0", mixed=True)
# adding a second adapter with same modules_to_save is not allowed
# TODO: theoretically, we could allow this if it's the same target layer
config1 = LoHaConfig(target_modules=["lin0"], modules_to_save=["lin1"])
peft_model.add_adapter("adapter1", config1)
with pytest.raises(ValueError, match="Only one adapter can be set at a time for modules_to_save"):
peft_model.set_adapter(["adapter0", "adapter1"])
def test_get_nb_trainable_parameters(self):
model = SimpleNet().eval().to(self.torch_device)
params_base = sum(p.numel() for p in model.parameters())
config0 = LoraConfig(target_modules=["lin0"])
peft_model = get_peft_model(model, config0, "adapter0", mixed=True)
trainable_params0, all_param0 = peft_model.get_nb_trainable_parameters()
params_lora = sum(p.numel() for n, p in model.named_parameters() if "adapter0" in n)
assert trainable_params0 == params_lora
assert all_param0 == (params_base + params_lora)
config1 = LoHaConfig(target_modules=["lin1"])
peft_model.add_adapter("adapter1", config1)
peft_model.set_adapter(["adapter0", "adapter1"])
params_loha = sum(p.numel() for n, p in model.named_parameters() if "adapter1" in n)
trainable_params1, all_param1 = peft_model.get_nb_trainable_parameters()
assert trainable_params1 == (params_lora + params_loha)
assert all_param1 == ((params_base + params_lora) + params_loha)
config2 = AdaLoraConfig(target_modules=["lin0", "lin1"])
peft_model.add_adapter("adapter2", config2)
peft_model.set_adapter(["adapter0", "adapter1", "adapter2"])
params_adalora = sum(p.numel() for n, p in model.named_parameters() if "adapter2" in n)
trainable_params2, all_param2 = peft_model.get_nb_trainable_parameters()
# remove 2 params because we need to exclude "ranknum" for AdaLora trainable params
assert trainable_params2 == (((params_lora + params_loha) + params_adalora) - 2)
assert all_param2 == (((params_base + params_lora) + params_loha) + params_adalora)
def test_incompatible_config_raises(self):
model = SimpleNet().eval().to(self.torch_device)
config0 = LoraConfig(target_modules=["lin0"])
peft_model = get_peft_model(model, config0, "adapter0", mixed=True)
config1 = PrefixTuningConfig()
msg = "The provided `peft_type` 'PREFIX_TUNING' is not compatible with the `PeftMixedModel`."
with pytest.raises(ValueError, match=msg):
peft_model.add_adapter("adapter1", config1)
def test_decoder_model(self):
# test a somewhat realistic model instead of a toy model
torch.manual_seed(0)
model_id = "hf-internal-testing/tiny-random-OPTForCausalLM"
model = AutoModelForCausalLM.from_pretrained(model_id).eval().to(self.torch_device)
input_ids = torch.tensor([[1, 1, 1], [1, 2, 1]]).to(self.torch_device)
attention_mask = torch.tensor([[1, 1, 1], [1, 0, 1]]).to(self.torch_device)
input_dict = {
"input_ids": input_ids,
"attention_mask": attention_mask,
}
output_base = model.generate(**input_dict)
torch.manual_seed(0)
config0 = LoraConfig(task_type="CAUSAL_LM", init_lora_weights=False)
peft_model = get_peft_model(model, config0, "adapter0", mixed=True)
output0 = peft_model.generate(**input_dict)
assert torch.isfinite(output0).all()
assert not torch.allclose(output_base, output0)
torch.manual_seed(1)
config1 = LoHaConfig(task_type="CAUSAL_LM", target_modules=["q_proj", "v_proj"], init_weights=False)
peft_model.add_adapter("adapter1", config1)
peft_model.set_adapter(["adapter0", "adapter1"])
output1 = peft_model.generate(**input_dict)
assert torch.isfinite(output1).all()
assert not torch.allclose(output0, output1)
torch.manual_seed(2)
config2 = AdaLoraConfig(task_type="CAUSAL_LM", init_lora_weights=False)
peft_model.add_adapter("adapter2", config2)
peft_model.set_adapter(["adapter0", "adapter1", "adapter2"])
output2 = peft_model.generate(**input_dict)
assert torch.isfinite(output2).all()
assert not torch.allclose(output1, output2)
torch.manual_seed(3)
config3 = LoKrConfig(task_type="CAUSAL_LM", target_modules=["q_proj", "v_proj"], init_weights=False)
peft_model.add_adapter("adapter3", config3)
peft_model.set_adapter(["adapter0", "adapter1", "adapter2", "adapter3"])
output3 = peft_model.generate(**input_dict)
assert torch.isfinite(output3).all()
assert not torch.allclose(output2, output3)
torch.manual_seed(4)
config4 = OFTConfig(task_type="CAUSAL_LM", target_modules=["q_proj", "v_proj"], init_weights=False)
peft_model.add_adapter("adapter4", config4)
peft_model.set_adapter(["adapter0", "adapter1", "adapter2", "adapter3", "adapter4"])
output4 = peft_model.generate(**input_dict)
assert torch.isfinite(output4).all()
assert not torch.allclose(output3, output4)
with peft_model.disable_adapter():
output_disabled = peft_model.generate(**input_dict)
assert torch.isfinite(output_disabled).all()
assert torch.allclose(output_base, output_disabled)
model_unloaded = peft_model.merge_and_unload()
output_unloaded = model_unloaded.generate(**input_dict)
assert torch.isfinite(output_unloaded).all()
assert torch.allclose(output4, output_unloaded)
with tempfile.TemporaryDirectory() as tmp_dir:
# save adapter0 (use normal PeftModel, because PeftMixedModel does not support saving)
torch.manual_seed(0)
model = AutoModelForCausalLM.from_pretrained(model_id).eval().to(self.torch_device)
torch.manual_seed(0)
peft_model = get_peft_model(model, config0, "adapter0")
output0_save = peft_model(**input_dict).logits
assert torch.isfinite(output0_save).all()
peft_model.save_pretrained(tmp_dir)
# save adapter1
torch.manual_seed(0)
model = AutoModelForCausalLM.from_pretrained(model_id).eval().to(self.torch_device)
torch.manual_seed(1)
peft_model = get_peft_model(model, config1, "adapter1")
output1_save = peft_model(**input_dict).logits
assert torch.isfinite(output1_save).all()
peft_model.save_pretrained(tmp_dir)
# load adapter0 and adapter1
model = AutoModelForCausalLM.from_pretrained(model_id).eval().to(self.torch_device)
peft_model = PeftMixedModel.from_pretrained(model, os.path.join(tmp_dir, "adapter0"), "adapter0")
peft_model.load_adapter(os.path.join(tmp_dir, "adapter1"), "adapter1")
peft_model.set_adapter(["adapter0", "adapter1"])
output01_loaded = peft_model(**input_dict).logits
atol, rtol = 1e-3, 1e-3
assert torch.isfinite(output01_loaded).all()
assert not torch.allclose(output0_save, output01_loaded, atol=atol, rtol=rtol)
assert not torch.allclose(output1_save, output01_loaded, atol=atol, rtol=rtol)
|