File size: 6,347 Bytes
9d6cb8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
#!/usr/bin/env python3

# coding=utf-8
# Copyright 2023-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import importlib
import os
import unittest

import torch
import torch.nn.init as init

from peft import LoraConfig, PeftModel, get_peft_model, get_peft_model_state_dict


def is_megatron_available() -> bool:
    return importlib.util.find_spec("megatron") is not None


if is_megatron_available():
    from megatron.core import parallel_state, tensor_parallel
    from megatron.core.tensor_parallel.random import model_parallel_cuda_manual_seed
    from megatron.core.transformer.module import MegatronModule
    from megatron.core.transformer.transformer_config import TransformerConfig

    world_size = 1
    rank = 0

    def initialize_distributed():
        print(f"Initializing torch.distributed with rank: {rank}, world_size: {world_size}")
        torch.cuda.set_device(0)
        init_method = "tcp://"
        master_ip = os.getenv("MASTER_ADDR", "localhost")
        master_port = os.getenv("MASTER_PORT", "6001")
        init_method += master_ip + ":" + master_port
        torch.distributed.init_process_group(backend="nccl", world_size=world_size, rank=rank, init_method=init_method)

    def destroy_model_parallel():
        parallel_state.destroy_model_parallel()
        torch.distributed.barrier()

    def initialize_model_parallel(
        tensor_model_parallel_size=1,
        pipeline_model_parallel_size=1,
        virtual_pipeline_model_parallel_size=None,
        pipeline_model_parallel_split_rank=None,
    ):
        parallel_state.destroy_model_parallel()
        if not torch.distributed.is_initialized():
            initialize_distributed()
        parallel_state.initialize_model_parallel(
            tensor_model_parallel_size,
            pipeline_model_parallel_size,
            virtual_pipeline_model_parallel_size,
            pipeline_model_parallel_split_rank,
        )

    class DummyModule(MegatronModule):
        def __init__(self, config: TransformerConfig):
            super().__init__(config)
            self.linear = tensor_parallel.ColumnParallelLinear(
                input_size=10,
                output_size=10,
                config=config,
                init_method=init.xavier_normal_,
                bias=False,
                gather_output=False,
            )
            self.lm_head = tensor_parallel.RowParallelLinear(
                input_size=10,
                output_size=10,
                config=config,
                init_method=init.xavier_normal_,
                bias=False,
                input_is_parallel=True,
                skip_bias_add=True,
            )

        def forward(self, input):
            x = self.linear(input)[0]
            x = self.lm_head(x)[0]
            return x

    class TestMegatronLora(unittest.TestCase):
        def setUp(self):
            initialize_model_parallel(1, 1)
            model_parallel_cuda_manual_seed(123)
            transformer_config = {
                "num_layers": 2,
                "hidden_size": 12,
                "num_attention_heads": 4,
                "use_cpu_initialization": True,
            }
            config = TransformerConfig(**transformer_config)
            self.megatron_module = DummyModule(config=config).cuda()
            self.dummy_module = copy.deepcopy(self.megatron_module).cuda()

            lora_config = LoraConfig(
                lora_alpha=16,
                lora_dropout=0.1,
                r=64,
                bias="none",
                target_modules=["linear", "lm_head"],
                megatron_config=config,
                megatron_core="megatron.core",
            )
            self.megatron_module = get_peft_model(self.megatron_module, lora_config)

        def tearDown(self):
            destroy_model_parallel()

        def test_megatron_lora_module(self):
            megatron_module = self.megatron_module
            assert isinstance(megatron_module, PeftModel)

            for name, module in megatron_module.named_modules():
                if name.endswith("linear"):
                    assert hasattr(module, "lora_A")
                    assert hasattr(module, "lora_B")
                if name.endswith("linear.lora_A.default"):
                    assert isinstance(module, torch.nn.Linear)
                if name.endswith("linear.lora_B.default"):
                    assert isinstance(module, tensor_parallel.ColumnParallelLinear)

                if name.endswith("lm_head.lora_A.default"):
                    assert isinstance(module, tensor_parallel.RowParallelLinear)
                if name.endswith("lm_head.lora_B.default"):
                    assert isinstance(module, torch.nn.Linear)

        def test_forward(self):
            x = torch.ones((2, 4, 10)).cuda()
            megatron_module_result = self.megatron_module(x)
            dummt_module_result = self.dummy_module(x)

            # Because lora_B is initialized with 0, the forward results of two models should be equal before backward.
            assert megatron_module_result.equal(dummt_module_result)

        def test_backward(self):
            optimizer = torch.optim.AdamW(self.megatron_module.parameters())
            loss_fn = torch.nn.CrossEntropyLoss()

            x = torch.randn(2, 4, 10, requires_grad=True).cuda()
            label = torch.randint(10, (2 * 4,)).cuda()

            output = self.megatron_module(x)
            output = output.reshape(2 * 4, 10)
            loss = loss_fn(output, label)

            loss.backward()
            optimizer.step()

        def test_get_peft_model_state_dict(self):
            peft_state_dict = get_peft_model_state_dict(self.megatron_module)

            for key in peft_state_dict.keys():
                assert "lora" in key