File size: 9,035 Bytes
9d6cb8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
# Copyright 2023-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import tempfile
import unittest

import torch

from peft import (
    AutoPeftModel,
    AutoPeftModelForCausalLM,
    AutoPeftModelForFeatureExtraction,
    AutoPeftModelForQuestionAnswering,
    AutoPeftModelForSeq2SeqLM,
    AutoPeftModelForSequenceClassification,
    AutoPeftModelForTokenClassification,
    PeftModel,
    PeftModelForCausalLM,
    PeftModelForFeatureExtraction,
    PeftModelForQuestionAnswering,
    PeftModelForSeq2SeqLM,
    PeftModelForSequenceClassification,
    PeftModelForTokenClassification,
)
from peft.utils import infer_device


class PeftAutoModelTester(unittest.TestCase):
    dtype = torch.float16 if infer_device() == "mps" else torch.bfloat16

    def test_peft_causal_lm(self):
        model_id = "peft-internal-testing/tiny-OPTForCausalLM-lora"
        model = AutoPeftModelForCausalLM.from_pretrained(model_id)
        assert isinstance(model, PeftModelForCausalLM)

        with tempfile.TemporaryDirectory() as tmp_dirname:
            model.save_pretrained(tmp_dirname)

            model = AutoPeftModelForCausalLM.from_pretrained(tmp_dirname)
            assert isinstance(model, PeftModelForCausalLM)

        # check if kwargs are passed correctly
        model = AutoPeftModelForCausalLM.from_pretrained(model_id, torch_dtype=self.dtype)
        assert isinstance(model, PeftModelForCausalLM)
        assert model.base_model.lm_head.weight.dtype == self.dtype

        adapter_name = "default"
        is_trainable = False
        # This should work
        _ = AutoPeftModelForCausalLM.from_pretrained(model_id, adapter_name, is_trainable, torch_dtype=self.dtype)

    def test_peft_causal_lm_extended_vocab(self):
        model_id = "peft-internal-testing/tiny-random-OPTForCausalLM-extended-vocab"
        model = AutoPeftModelForCausalLM.from_pretrained(model_id)
        assert isinstance(model, PeftModelForCausalLM)

        # check if kwargs are passed correctly
        model = AutoPeftModelForCausalLM.from_pretrained(model_id, torch_dtype=self.dtype)
        assert isinstance(model, PeftModelForCausalLM)
        assert model.base_model.lm_head.weight.dtype == self.dtype

        adapter_name = "default"
        is_trainable = False
        # This should work
        _ = AutoPeftModelForCausalLM.from_pretrained(model_id, adapter_name, is_trainable, torch_dtype=self.dtype)

    def test_peft_seq2seq_lm(self):
        model_id = "peft-internal-testing/tiny_T5ForSeq2SeqLM-lora"
        model = AutoPeftModelForSeq2SeqLM.from_pretrained(model_id)
        assert isinstance(model, PeftModelForSeq2SeqLM)

        with tempfile.TemporaryDirectory() as tmp_dirname:
            model.save_pretrained(tmp_dirname)

            model = AutoPeftModelForSeq2SeqLM.from_pretrained(tmp_dirname)
            assert isinstance(model, PeftModelForSeq2SeqLM)

        # check if kwargs are passed correctly
        model = AutoPeftModelForSeq2SeqLM.from_pretrained(model_id, torch_dtype=self.dtype)
        assert isinstance(model, PeftModelForSeq2SeqLM)
        assert model.base_model.lm_head.weight.dtype == self.dtype

        adapter_name = "default"
        is_trainable = False
        # This should work
        _ = AutoPeftModelForSeq2SeqLM.from_pretrained(model_id, adapter_name, is_trainable, torch_dtype=self.dtype)

    def test_peft_sequence_cls(self):
        model_id = "peft-internal-testing/tiny_OPTForSequenceClassification-lora"
        model = AutoPeftModelForSequenceClassification.from_pretrained(model_id)
        assert isinstance(model, PeftModelForSequenceClassification)

        with tempfile.TemporaryDirectory() as tmp_dirname:
            model.save_pretrained(tmp_dirname)

            model = AutoPeftModelForSequenceClassification.from_pretrained(tmp_dirname)
            assert isinstance(model, PeftModelForSequenceClassification)

        # check if kwargs are passed correctly
        model = AutoPeftModelForSequenceClassification.from_pretrained(model_id, torch_dtype=self.dtype)
        assert isinstance(model, PeftModelForSequenceClassification)
        assert model.score.original_module.weight.dtype == self.dtype

        adapter_name = "default"
        is_trainable = False
        # This should work
        _ = AutoPeftModelForSequenceClassification.from_pretrained(
            model_id, adapter_name, is_trainable, torch_dtype=self.dtype
        )

    def test_peft_token_classification(self):
        model_id = "peft-internal-testing/tiny_GPT2ForTokenClassification-lora"
        model = AutoPeftModelForTokenClassification.from_pretrained(model_id)
        assert isinstance(model, PeftModelForTokenClassification)

        with tempfile.TemporaryDirectory() as tmp_dirname:
            model.save_pretrained(tmp_dirname)

            model = AutoPeftModelForTokenClassification.from_pretrained(tmp_dirname)
            assert isinstance(model, PeftModelForTokenClassification)

        # check if kwargs are passed correctly
        model = AutoPeftModelForTokenClassification.from_pretrained(model_id, torch_dtype=self.dtype)
        assert isinstance(model, PeftModelForTokenClassification)
        assert model.base_model.classifier.original_module.weight.dtype == self.dtype

        adapter_name = "default"
        is_trainable = False
        # This should work
        _ = AutoPeftModelForTokenClassification.from_pretrained(
            model_id, adapter_name, is_trainable, torch_dtype=self.dtype
        )

    def test_peft_question_answering(self):
        model_id = "peft-internal-testing/tiny_OPTForQuestionAnswering-lora"
        model = AutoPeftModelForQuestionAnswering.from_pretrained(model_id)
        assert isinstance(model, PeftModelForQuestionAnswering)

        with tempfile.TemporaryDirectory() as tmp_dirname:
            model.save_pretrained(tmp_dirname)

            model = AutoPeftModelForQuestionAnswering.from_pretrained(tmp_dirname)
            assert isinstance(model, PeftModelForQuestionAnswering)

        # check if kwargs are passed correctly
        model = AutoPeftModelForQuestionAnswering.from_pretrained(model_id, torch_dtype=self.dtype)
        assert isinstance(model, PeftModelForQuestionAnswering)
        assert model.base_model.qa_outputs.original_module.weight.dtype == self.dtype

        adapter_name = "default"
        is_trainable = False
        # This should work
        _ = AutoPeftModelForQuestionAnswering.from_pretrained(
            model_id, adapter_name, is_trainable, torch_dtype=self.dtype
        )

    def test_peft_feature_extraction(self):
        model_id = "peft-internal-testing/tiny_OPTForFeatureExtraction-lora"
        model = AutoPeftModelForFeatureExtraction.from_pretrained(model_id)
        assert isinstance(model, PeftModelForFeatureExtraction)

        with tempfile.TemporaryDirectory() as tmp_dirname:
            model.save_pretrained(tmp_dirname)

            model = AutoPeftModelForFeatureExtraction.from_pretrained(tmp_dirname)
            assert isinstance(model, PeftModelForFeatureExtraction)

        # check if kwargs are passed correctly
        model = AutoPeftModelForFeatureExtraction.from_pretrained(model_id, torch_dtype=self.dtype)
        assert isinstance(model, PeftModelForFeatureExtraction)
        assert model.base_model.model.decoder.embed_tokens.weight.dtype == self.dtype

        adapter_name = "default"
        is_trainable = False
        # This should work
        _ = AutoPeftModelForFeatureExtraction.from_pretrained(
            model_id, adapter_name, is_trainable, torch_dtype=self.dtype
        )

    def test_peft_whisper(self):
        model_id = "peft-internal-testing/tiny_WhisperForConditionalGeneration-lora"
        model = AutoPeftModel.from_pretrained(model_id)
        assert isinstance(model, PeftModel)

        with tempfile.TemporaryDirectory() as tmp_dirname:
            model.save_pretrained(tmp_dirname)

            model = AutoPeftModel.from_pretrained(tmp_dirname)
            assert isinstance(model, PeftModel)

        # check if kwargs are passed correctly
        model = AutoPeftModel.from_pretrained(model_id, torch_dtype=self.dtype)
        assert isinstance(model, PeftModel)
        assert model.base_model.model.model.encoder.embed_positions.weight.dtype == self.dtype

        adapter_name = "default"
        is_trainable = False
        # This should work
        _ = AutoPeftModel.from_pretrained(model_id, adapter_name, is_trainable, torch_dtype=self.dtype)