File size: 22,759 Bytes
9d6cb8e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 |
# Copyright 2023-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Regression testing: check that checkpoints from previous PEFT versions still return the same values.
#
# For normal regression testing, just run:
#
# `pytest tests/regression/test_regression.py -s --regression`
#
# Add `-s` to show potentially useful debugging information. `--regression` is a custom marker that is required for
# regression tests not to be skipped.
#
# To create new regression tests, run:
# `HF_TOKEN=<token> REGRESSION_CREATION_MODE=True pytest tests/regression/test_regression.py -s --regression`
#
# This will *fail* if:
#
# 1. the git worktree is dirty
# 2. the git commit is not tagged
#
# Note: A Hugging Face Hub token is required to upload the regression artifacts to our
# https://huggingface.co/peft-internal-testing repo. This can be done by anyone with write access to the repo but
# apparently it is not possible to create a technical token with write access.
#
# This is important to ensure that the regression artifacts correspond to a specific released version of PEFT.
# Therefore, it is recommended to checkout the tag before running the regression tests, e.g. by running:
#
# `git checkout v0.1.0`
#
# To override these checks, run:
# ``HF_TOKEN=<token> REGRESSION_CREATION_MODE=True REGRESSION_FORCE_MODE=True pytest tests/regression/test_regression.py -s --regression`
#
# In REGRESSION_CREATION_MODE, one directory will be created in tests/regression/<TEST_NAME>/<PEFT_VERSION>/ for each
# test. This will contain the saved adapter, as well as the output of the test of the model for that version.
#
# In normal testing mode, the saved adapter and output for each version found in the directory
# tests/regression/<TEST_NAME>/ will be loaded and compared to the current output.
#
# When implementing new tests, check the existing ones as well as the description in the docstring of RegressionTester.
import os
import shutil
import subprocess
import sys
import tempfile
import unittest
import pytest
import torch
from huggingface_hub import snapshot_download, upload_folder
from torch import nn
from transformers import AutoModelForCausalLM, BitsAndBytesConfig
from transformers.pytorch_utils import Conv1D
import peft
from peft import (
AdaLoraConfig,
BOFTConfig,
IA3Config,
LNTuningConfig,
LoHaConfig,
LoKrConfig,
LoraConfig,
PeftModel,
VeraConfig,
get_peft_model,
)
from peft.utils import infer_device
PEFT_VERSION = peft.__version__
REGRESSION_DIR = tempfile.mkdtemp(prefix="peft_regression_")
HF_TOKEN = os.environ.get("HF_TOKEN")
# the repo has to be created manually once, it is not automatically created
HF_REPO = "peft-internal-testing/regression-tests"
@pytest.fixture(scope="session", autouse=True)
def setup_tearndown():
# Use a pytest session-scoped fixture to setup and teardown exactly once per session. AFAICT, unittest does not
# provide such a feature
# download regression artifacts from Hugging Face Hub at the start
snapshot_download(
repo_id=HF_REPO,
local_dir=REGRESSION_DIR,
# Don't use symlink, because this prevents us from properly cleaning up the files once finished
local_dir_use_symlinks=False,
)
yield
# delete regression artifacts at the end of the test session; optionally, upload them first if in creation mode
creation_mode = strtobool(os.environ.get("REGRESSION_CREATION_MODE", "False"))
if creation_mode:
# upload the regression directory to Hugging Face Hub, will overwrite by default
upload_folder(
repo_id=HF_REPO,
folder_path=REGRESSION_DIR,
token=HF_TOKEN,
)
shutil.rmtree(REGRESSION_DIR)
def strtobool(val):
"""Copied from distutils.util"""
val = val.lower()
if val in ("y", "yes", "t", "true", "on", "1"):
return 1
elif val in ("n", "no", "f", "false", "off", "0"):
return 0
else:
raise ValueError(f"invalid truth value {val!r}")
# same as in ..testing_utils.py but cannot be imported
def require_torch_gpu(test_case):
"""
Decorator marking a test that requires a GPU. Will be skipped when no GPU is available.
Copies from tsting_utils.py.
"""
if not torch.cuda.is_available():
return unittest.skip("test requires GPU")(test_case)
else:
return test_case
# same as in ..testing_utils.py but cannot be imported
def require_bitsandbytes(test_case):
"""
Decorator marking a test that requires the bitsandbytes library. Will be skipped when the library is not installed.
Copies from tsting_utils.py.
"""
try:
import bitsandbytes # noqa: F401
except ImportError:
return unittest.skip("test requires bitsandbytes")(test_case)
else:
return test_case
def save_output(output, name, force=False):
path = os.path.join(REGRESSION_DIR, name, PEFT_VERSION)
filename = os.path.join(path, "output.pt")
if os.path.exists(filename) and not force:
return
if not os.path.exists(path):
os.makedirs(path)
if os.path.exists(filename) and force:
print(f"Overriding existing output in {filename}", file=sys.stderr)
torch.save(output, filename)
def save_model(model, name, force=False):
path = os.path.join(REGRESSION_DIR, name, PEFT_VERSION)
filename = os.path.join(path, peft.utils.SAFETENSORS_WEIGHTS_NAME)
if os.path.exists(filename) and not force:
return
if not os.path.exists(path):
os.makedirs(path)
if os.path.exists(filename) and force:
print(f"Overriding existing model in {path}", file=sys.stderr)
model.save_pretrained(path)
def load_output(name):
filename = os.path.join(REGRESSION_DIR, name, "output.pt")
return torch.load(filename)
@pytest.mark.regression
class RegressionTester(unittest.TestCase):
"""Base class for regression testing
Child classes must call assert_results_equal_or_store and pass the model outtput, as well as a unique name that
describes the setting (e.g. "lora_opt-350m_bnb_4bit"). They also need to implement get_output(model) to get the
model output, and load_base_model(name) to load the base model. Don't forget to fix the seed in load_base_model.
"""
torch_device = infer_device()
def setUp(self):
self.tol = 1e-4
self.creation_mode = strtobool(os.environ.get("REGRESSION_CREATION_MODE", "False"))
self.force_mode = strtobool(os.environ.get("REGRESSION_FORCE_MODE", "False"))
if self.force_mode and not self.creation_mode:
raise RuntimeError("REGRESSION_FORCE_MODE can only be used together with REGRESSION_CREATION_MODE")
if self.creation_mode:
self.check_clean_git_status(self.force_mode)
if HF_TOKEN is None:
raise RuntimeError("HF_TOKEN environment variable must be set in creation mode")
def fix_seed(self):
torch.manual_seed(0)
def check_clean_git_status(self, force):
"""Ensure that worktree is not dirty and version tag is checked out"""
# check that the worktree is clean
try:
subprocess.check_output(["git", "diff", "--quiet", "HEAD"])
except subprocess.CalledProcessError as exc:
if force:
print("Overriding despite dirty git worktree", file=sys.stderr)
else:
raise RuntimeError("Git worktree is dirty") from exc
# check that the commit is tagged
try:
subprocess.check_output(["git", "describe", "--exact-match", "HEAD"])
except subprocess.CalledProcessError as exc:
if force:
print("Overriding despite non-tagged commit", file=sys.stderr)
else:
raise RuntimeError("Git commit is not tagged") from exc
def assert_results_equal_or_store(self, model, name):
"""Check if the outputs are the same or save the outputs if in creation mode."""
if not self.creation_mode: # normal regression testing mode
self._assert_results_equal(name)
else:
output = self.get_output(model)
if not torch.isfinite(output).all():
raise RuntimeError(f"Model output for {name} is not finite")
output2 = self.get_output(model)
if not torch.allclose(output, output2):
raise RuntimeError(f"Model output for {name} is not deterministic")
save_output(output, name, force=self.force_mode)
save_model(model, name, force=self.force_mode)
def _assert_results_equal(self, name):
path = os.path.join(REGRESSION_DIR, name)
versions = os.listdir(path)
for version in versions: # each directory corresponds to a version
output_loaded = load_output(os.path.join(name, version))
base_model = self.load_base_model()
model = PeftModel.from_pretrained(base_model, os.path.join(path, version))
output = self.get_output(model)
assert torch.allclose(output_loaded, output, atol=self.tol, rtol=self.tol)
def get_output(self, model):
raise NotImplementedError
def load_base_model(self):
raise NotImplementedError
##############
# TEST CASES #
##############
class TestMlp(RegressionTester):
def get_output(self, model):
input = torch.arange(90).reshape(9, 10).to(self.torch_device)
with torch.inference_mode():
output = model(input)
return output
def load_base_model(self):
class MLP(nn.Module):
def __init__(self, bias=True):
super().__init__()
self.lin0 = nn.Linear(10, 20, bias=bias)
self.relu = nn.ReLU()
self.lin1 = nn.Linear(20, 2, bias=bias)
self.sm = nn.LogSoftmax(dim=-1)
def forward(self, X):
X = X.float()
X = self.lin0(X)
X = self.relu(X)
X = self.lin1(X)
X = self.sm(X)
return X
self.fix_seed()
return MLP().to(self.torch_device)
def test_lora(self):
base_model = self.load_base_model()
config = LoraConfig(
r=8,
init_lora_weights=False,
target_modules=["lin0"],
)
model = get_peft_model(base_model, config)
self.assert_results_equal_or_store(model, "lora_mlp")
def test_lora_dora(self):
base_model = self.load_base_model()
config = LoraConfig(
r=8,
init_lora_weights=False,
target_modules=["lin0"],
use_dora=True,
)
model = get_peft_model(base_model, config)
self.assert_results_equal_or_store(model, "lora_dora_mlp")
def test_adalora(self):
base_model = self.load_base_model()
config = AdaLoraConfig(
r=8,
init_lora_weights=False,
target_modules=["lin0"],
)
model = get_peft_model(base_model, config)
self.assert_results_equal_or_store(model, "adalora_mlp")
def test_ia3(self):
base_model = self.load_base_model()
config = IA3Config(
init_ia3_weights=False,
target_modules=["lin0"],
feedforward_modules=["lin0"],
)
model = get_peft_model(base_model, config)
self.assert_results_equal_or_store(model, "ia3_mlp")
def test_ia3_no_ff(self):
base_model = self.load_base_model()
config = IA3Config(
init_ia3_weights=False,
target_modules=["lin0"],
feedforward_modules=[],
)
model = get_peft_model(base_model, config)
self.assert_results_equal_or_store(model, "ia3_no_ff_mlp")
def test_loha(self):
# TODO
self.skipTest("Skipping LoHa for now because init is not seedable")
base_model = self.load_base_model()
config = LoHaConfig(
r=8,
init_weights=False,
target_modules=["lin0"],
)
model = get_peft_model(base_model, config)
self.assert_results_equal_or_store(model, "loha_mlp")
def test_lokr(self):
# TODO
self.skipTest("Skipping LoKr for now because init is not seedable")
base_model = self.load_base_model()
config = LoKrConfig(
r=8,
target_modules=["lin0"],
)
model = get_peft_model(base_model, config)
self.assert_results_equal_or_store(model, "lokr_mlp")
def test_lora_modules_to_save(self):
base_model = self.load_base_model()
config = LoraConfig(
r=8,
init_lora_weights=False,
target_modules=["lin0"],
modules_to_save=["lin1"],
)
model = get_peft_model(base_model, config)
self.assert_results_equal_or_store(model, "lora_mlp_modules_to_save")
def test_boft(self):
base_model = self.load_base_model()
config = BOFTConfig(
boft_block_size=2,
target_modules=["lin0"],
)
model = get_peft_model(base_model, config)
self.assert_results_equal_or_store(model, "boft_mlp")
def test_ln_tuning(self):
base_model = self.load_base_model()
config = LNTuningConfig(target_modules=["lin0"])
model = get_peft_model(base_model, config)
self.assert_results_equal_or_store(model, "ln_tuning_mlp")
def test_vera_tuning(self):
base_model = self.load_base_model()
config = VeraConfig(target_modules=["lin0"])
model = get_peft_model(base_model, config)
self.assert_results_equal_or_store(model, "vera_tuning_mlp")
class TestLoraEmbConv1D(RegressionTester):
def get_output(self, model):
input = torch.arange(90).reshape(9, 10).to(self.torch_device)
with torch.inference_mode():
output = model(input)
return output
def load_base_model(self):
class ModelEmbConv1D(nn.Module):
def __init__(self):
super().__init__()
self.emb = nn.Embedding(100, 5)
self.conv1d = Conv1D(1, 5)
self.relu = nn.ReLU()
self.flat = nn.Flatten()
self.lin0 = nn.Linear(10, 2)
self.sm = nn.LogSoftmax(dim=-1)
def forward(self, X):
X = self.emb(X)
X = self.conv1d(X)
X = self.relu(X)
X = self.flat(X)
X = self.lin0(X)
X = self.sm(X)
return X
self.fix_seed()
return ModelEmbConv1D().to(self.torch_device)
def test_lora(self):
base_model = self.load_base_model()
config = LoraConfig(
r=8,
init_lora_weights=False,
target_modules=["emb", "conv1d"],
)
model = get_peft_model(base_model, config)
self.assert_results_equal_or_store(model, "lora_emb_conv1d")
class TestLoraConv2D(RegressionTester):
def get_output(self, model):
input = torch.arange(90).reshape(9, 10).to(self.torch_device)
with torch.inference_mode():
output = model(input)
return output
def load_base_model(self):
class ModelConv2D(nn.Module):
def __init__(self):
super().__init__()
self.conv2d = nn.Conv2d(5, 10, 3)
self.relu = nn.ReLU()
self.flat = nn.Flatten()
self.lin0 = nn.Linear(10, 2)
self.sm = nn.LogSoftmax(dim=-1)
def forward(self, X):
X = X.float().reshape(2, 5, 3, 3)
X = self.conv2d(X)
X = self.relu(X)
X = self.flat(X)
X = self.lin0(X)
X = self.sm(X)
return X
self.fix_seed()
return ModelConv2D().to(self.torch_device)
def test_lora(self):
base_model = self.load_base_model()
config = LoraConfig(
r=8,
init_lora_weights=False,
target_modules=["conv2d"],
)
model = get_peft_model(base_model, config)
self.assert_results_equal_or_store(model, "lora_conv2d")
def test_ia3(self):
base_model = self.load_base_model()
config = IA3Config(
init_ia3_weights=False,
target_modules=["conv2d"],
feedforward_modules=["conv2d"],
)
model = get_peft_model(base_model, config)
self.assert_results_equal_or_store(model, "ia3_conv2d")
def test_loha(self):
# TODO
self.skipTest("Skipping LoHa for now because init is not seedable")
base_model = self.load_base_model()
config = LoHaConfig(
r=8,
init_weights=False,
target_modules=["conv2d"],
)
model = get_peft_model(base_model, config)
self.assert_results_equal_or_store(model, "loha_conv2d")
def test_lokr(self):
# TODO
self.skipTest("Skipping LoKr for now because init is not seedable")
base_model = self.load_base_model()
config = LoKrConfig(
r=8,
init_weights=False,
target_modules=["conv2d"],
)
model = get_peft_model(base_model, config)
self.assert_results_equal_or_store(model, "lokr_conv2d")
def test_boft(self):
base_model = self.load_base_model()
config = BOFTConfig(
boft_block_size=3,
target_modules=["conv2d"],
)
model = get_peft_model(base_model, config)
self.assert_results_equal_or_store(model, "boft_conv2d")
class TestOpt(RegressionTester):
def get_output(self, model):
input = torch.LongTensor([[1, 0, 1, 0, 1, 2]]).to(self.torch_device)
with torch.inference_mode():
output = model(input).logits
return output
def load_base_model(self):
self.fix_seed()
return AutoModelForCausalLM.from_pretrained("facebook/opt-350m").to(self.torch_device)
def test_lora(self):
base_model = self.load_base_model()
config = LoraConfig(
r=8,
init_lora_weights=False,
)
model = get_peft_model(base_model, config)
self.assert_results_equal_or_store(model, "lora_opt-350m")
def test_adalora(self):
base_model = self.load_base_model()
config = AdaLoraConfig(
r=8,
init_lora_weights=False,
)
model = get_peft_model(base_model, config)
self.assert_results_equal_or_store(model, "adalora_opt-350m")
def test_ia3(self):
base_model = self.load_base_model()
config = IA3Config(init_ia3_weights=False)
model = get_peft_model(base_model, config)
self.assert_results_equal_or_store(model, "ia3_opt-350m")
@require_torch_gpu
@require_bitsandbytes
class TestOpt8bitBnb(RegressionTester):
def get_output(self, model):
input = torch.LongTensor([[1, 0, 1, 0, 1, 2]]).to(self.torch_device)
with torch.inference_mode():
output = model(input).logits
return output
def load_base_model(self):
self.fix_seed()
model = AutoModelForCausalLM.from_pretrained(
"facebook/opt-350m",
quantization_config=BitsAndBytesConfig(load_in_8bit=True),
)
return model
def test_lora_8bit(self):
base_model = self.load_base_model()
config = LoraConfig(
r=8,
init_lora_weights=False,
)
model = get_peft_model(base_model, config)
self.assert_results_equal_or_store(model, "lora_opt-350m_bnb_8bit")
def test_adalora(self):
# TODO
self.skipTest(
"Skipping AdaLora for now, getting TypeError: unsupported operand type(s) for +=: 'dict' and 'Tensor'"
)
base_model = self.load_base_model()
config = AdaLoraConfig(
init_r=6,
target_r=4,
tinit=50,
tfinal=100,
deltaT=5,
beta1=0.3,
beta2=0.3,
orth_reg_weight=0.2,
lora_alpha=32,
lora_dropout=0.05,
bias="none",
task_type="CAUSAL_LM",
)
model = get_peft_model(base_model, config)
self.assert_results_equal_or_store(model, "adalora_opt-350m_8bit")
@require_torch_gpu
@require_bitsandbytes
class TestOpt4bitBnb(RegressionTester):
def get_output(self, model):
input = torch.LongTensor([[1, 0, 1, 0, 1, 2]]).to(self.torch_device)
with torch.inference_mode():
output = model(input).logits
return output
def load_base_model(self):
self.fix_seed()
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=False,
bnb_4bit_compute_dtype=torch.float32,
)
model = AutoModelForCausalLM.from_pretrained(
"facebook/opt-350m",
quantization_config=bnb_config,
torch_dtype=torch.float32,
)
return model
def test_lora_4bit(self):
base_model = self.load_base_model()
config = LoraConfig(
r=8,
init_lora_weights=False,
)
model = get_peft_model(base_model, config)
self.assert_results_equal_or_store(model, "lora_opt-350m_bnb_4bit")
def test_adalora(self):
# TODO
self.skipTest("Skipping AdaLora for now because of a bug, see #1113")
base_model = self.load_base_model()
config = AdaLoraConfig(
init_r=6,
target_r=4,
tinit=50,
tfinal=100,
deltaT=5,
beta1=0.3,
beta2=0.3,
orth_reg_weight=0.2,
lora_alpha=32,
lora_dropout=0.05,
bias="none",
task_type="CAUSAL_LM",
)
model = get_peft_model(base_model, config)
self.assert_results_equal_or_store(model, "adalora_opt-350m_4bit")
|