File size: 1,675 Bytes
9d6cb8e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
<!--⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Models
[`PeftModel`] is the base model class for specifying the base Transformer model and configuration to apply a PEFT method to. The base `PeftModel` contains methods for loading and saving models from the Hub.
## PeftModel
[[autodoc]] PeftModel
- all
## PeftModelForSequenceClassification
A `PeftModel` for sequence classification tasks.
[[autodoc]] PeftModelForSequenceClassification
- all
## PeftModelForTokenClassification
A `PeftModel` for token classification tasks.
[[autodoc]] PeftModelForTokenClassification
- all
## PeftModelForCausalLM
A `PeftModel` for causal language modeling.
[[autodoc]] PeftModelForCausalLM
- all
## PeftModelForSeq2SeqLM
A `PeftModel` for sequence-to-sequence language modeling.
[[autodoc]] PeftModelForSeq2SeqLM
- all
## PeftModelForQuestionAnswering
A `PeftModel` for question answering.
[[autodoc]] PeftModelForQuestionAnswering
- all
## PeftModelForFeatureExtraction
A `PeftModel` for getting extracting features/embeddings from transformer models.
[[autodoc]] PeftModelForFeatureExtraction
- all
## PeftMixedModel
A `PeftModel` for mixing different adapter types (e.g. LoRA and LoHa).
[[autodoc]] PeftMixedModel
- all
## Utilities
[[autodoc]] utils.cast_mixed_precision_params
[[autodoc]] get_peft_model
[[autodoc]] inject_adapter_in_model
[[autodoc]] utils.get_peft_model_state_dict
[[autodoc]] utils.prepare_model_for_kbit_training
[[autodoc]] get_layer_status
[[autodoc]] get_model_status
|